4.若函數(shù)y=f(x)的定義域是[0,3],則函數(shù)g(x)=$\frac{f(x+1)}{x-2}$的定義域是[-1,2).

分析 利用函數(shù)的定義域,列出不等式組求解即可.

解答 解:函數(shù)y=f(x)的定義域是[0,3],
要使函數(shù)g(x)=$\frac{f(x+1)}{x-2}$有意義,
可得$\left\{\begin{array}{l}0≤x+1≤3\\ x-2≠0\end{array}\right.$,
解得:-1≤x<2.
函數(shù)g(x)=$\frac{f(x+1)}{x-2}$的定義域是[-1,2).
故答案為:[-1,2).

點評 本題考查函數(shù)的定義域的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題p:函數(shù)f(x)=2x2-2(2m+1)x-6m(m-1)(x∈R)的圖象在(-1,5)上恰有一個零點;命題q:函數(shù)g(x)=x5-m在(0,+∞)上是減函數(shù),如果p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\frac{ln(x-1)}{\sqrt{4-x}}$的定義域為(  )
A.[1,4]B.(1,4)C.[2,4]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x-1},x≥1}\end{array}\right.$,對任意x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,則實數(shù)a的取值范圍是( 。
A.(0,1)B.($\frac{2}{7}$,$\frac{1}{3}$)C.[$\frac{2}{7}$,$\frac{1}{3}$)D.[$\frac{2}{7}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求值:$\root{3}{5+2\sqrt{13}}$+$\root{3}{5-2\sqrt{13}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}共有40項,且$\frac{{S}_{奇}}{{S}_{偶}}$=$\frac{3}{5}$,公差d=2,則a1=-35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.比較下列各組數(shù)的大。
(1)(-1.1)${\;}^{\frac{3}{5}}$,(-1.1)${\;}^{\frac{5}{7}}$;
(2)1.9,-1.9-3;
(3)0.7${\;}^{2-\sqrt{3}}$,0.70.3;
(4)0.60.4,0.40.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.求和:12-32+52-72+…+(-1)n+1(2n-1)2=$\left\{\begin{array}{l}{-2{n}^{2},n為偶數(shù)}\\{2{n}^{2}-1,n為奇數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.不等式ax2+5x-4<0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案