19.平面上的兩個向量$\overrightarrow{OA}$和$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=a,|$\overrightarrow{OB}$|=b,且a2+b2=4,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,若向量$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R).且(λ-$\frac{1}{2}$)2a2+(μ-$\frac{1}{2}$)2b2=1,則|$\overrightarrow{OC}$|的最大值是2.

分析 由條件即可得到|AB|=2,OA⊥OB,然后畫出圖形,并取AB中點D,從而可得出$\overrightarrow{DC}$=$(λ-\frac{1}{2})\overrightarrow{OA}+(μ-\frac{1}{2})\overrightarrow{OB}$,通過求${\overrightarrow{DC}}^{2}$即可求出$|\overrightarrow{DC}|=1$,這樣點C便在以D為圓心,1為半徑的圓上,從而得出OC為圓D的直徑時$|\overrightarrow{OC}|$最大,并可得出該最大值.

解答 解:根據(jù)條件,|AB|=2,OA⊥OB,如圖,取AB中點D,則:
$\overrightarrow{OD}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$;
∴$\overrightarrow{DC}=\overrightarrow{OC}-\overrightarrow{OD}$=$(λ-\frac{1}{2})\overrightarrow{OA}+(μ-\frac{1}{2})\overrightarrow{OB}$;
∴${\overrightarrow{DC}}^{2}=(λ-\frac{1}{2})^{2}{a}^{2}+(μ-\frac{1}{2})^{2}^{2}=1$;
∴|DC|=1;
∴C在以D為圓心,1為半徑的圓上;
∴當(dāng)OC為圓D的直徑時,$|\overrightarrow{OC}|$最大,∴$|\overrightarrow{OC}|$的最大值為2.
故答案為:2.

點評 考查向量垂直的充要條件,向量加法的平行四邊形法則,向量減法的幾何意義,以及向量的數(shù)乘運算,向量數(shù)量積的運算,直徑所對圓周角為直角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若傾斜角為$\frac{π}{6}$的直線過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左焦點F且交橢圓于A,B兩點,若|AF|=3|BF|,則橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知m,n是空間中兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若m⊥n,n⊥α,則m∥αB.若α⊥β,m∥α,則m⊥β
C.若m∥α,n∥β,m∥n,則α∥βD.若m⊥β,m∥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,收集數(shù)據(jù)如下:
實驗順序第一次第二次第三次第四次第五次
零件數(shù)
x(個)
1020304050
加工時間y(分鐘)6266758488
(1)請根據(jù)五次試驗的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)根據(jù)(1)得到的線性回歸方程預(yù)測加工70個零件所需要的時間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}x$,其中$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\sum_{i=1}^{n}$yi

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出下列例題:
①若奇函數(shù)f(x)對定義域內(nèi)任意x都有f(x)=f(2-x),則函數(shù)f(x)為周期函數(shù);
②函數(shù)f(x)=(x-3)e-x的單調(diào)遞增區(qū)間為(2,+∞);
③若函數(shù)f(x)=f'($\frac{π}{4}$)cosx+sinx,則f($\frac{π}{4}$)的值為1;
④函數(shù)f(x)=2|x||log0.5x|-1的零點的個數(shù)為2,
其中真命題是①③④(將你認為真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c(a>0),曲線y=f(x)在點(0,f(0))處的切線方程為y=1
(1)求b,c的值;
(2)若函數(shù)f(x)有且只有兩個不同的零點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以下四個命題中:
①已知圓C上一定點A和一動點B,O為坐標(biāo)原點,若$\overrightarrow{OP}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}}$),則動點P的軌跡為圓;
②設(shè)A、B為兩個定點,k為非零常數(shù),|$\overrightarrow{PA}}$|-|${\overrightarrow{PB}}$|=k,則動點P的軌跡為雙曲線;
③0<θ<$\frac{π}{4}$,則雙曲線C1:$\frac{x^2}{{{{cos}^2}θ}}-\frac{y^2}{{{{sin}^2}θ}}$=1與C2:$\frac{y^2}{{{{sin}^2}θ}}-\frac{x^2}{{{{sin}^2}θ{{tan}^2}θ}}$=1的離心率相同;
④已知兩定點F1(-1,0),F(xiàn)2(1,0)和一動點P,若|PF1|•|PF2|=a2(a≠0),則點P的軌跡關(guān)于原點對稱.
其中正確命題的序號為①③④        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若直角坐標(biāo)平面內(nèi)的兩點P,Q滿足條件:①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點對稱.則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”(點對[P,Q]與[Q,P]看作同一對“友好點對”).已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$則此函數(shù)的“友好點對”有2對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁UA)∩B=∅,求m的值.
(2)設(shè)集合A={x|-2≤x≤5},B={x|n+1≤x≤2n-1},B⊆A,求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案