A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 在①中,由面面垂直的判定理定理得α⊥β;在②中,n∥α或n?α;在③中,由面面平行的性質(zhì)判斷;在④中,m與β相交、平行或m?β.
解答 解:α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,知:
在①中:若m⊥α,m?β,則由面面垂直的判定理定理得α⊥β,故①正確;
在②中:若m⊥n,m⊥α,則n∥α或n?α,故②錯(cuò)誤;
在③中,若m?α,n?β,α∥β,則m∥n或者異面;故③錯(cuò)誤.
④若m∥α,α⊥β,則m與β相交、平行或m?β,故④錯(cuò)誤.
所以正確的個(gè)數(shù)為1:
故選B.
點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6\sqrt{2}$ | B. | $\sqrt{2}+2\sqrt{5}$ | C. | $3\sqrt{2}$ | D. | $2\sqrt{2}+2\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,5+2$\sqrt{2}$] | B. | (-∞,8] | C. | [$\frac{26}{3}$,+∞) | D. | (-∞,5+2$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com