(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.
(Ⅰ)見解析(Ⅱ)
解析試題分析:(I)由已知容易證PA⊥CE,CE⊥AD,由直線與平面垂直的判定定理可得
(II)由(I)可知CE⊥AD,從而有四邊形ABCE為矩形,且可得P到平面ABCD的距離PA=1,代入錐體體積公式可求
解:(I)證明:因?yàn)镻A⊥平面ABCD,CE?平面ABCD,
所以PA⊥CE,
因?yàn)锳B⊥AD,CE∥AB,所以CE⊥AD
又PA∩AD=A,所以CE⊥平面PAD
(II)由(I)可知CE⊥AD
在Rt△ECD中,DE=CDcos45°=1,CE=CDsin45°=1,又因?yàn)锳B=CE=1,AB∥CE
所以四邊形ABCE為矩形
所以
=
又PA⊥平面ABCD,PA=1
所以
點(diǎn)評:本題主要考查直線與直線、直線與平面的位置關(guān)系,幾何體的體積等基礎(chǔ)知識;考查空間想象能力、推理論證能力,運(yùn)算求解的能力;考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化的思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn).
(1)證明:面面;
(2)求與所成的角的余弦值;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D為棱AB的中點(diǎn),BC=1,AA1=.
(1)求證:BC1∥平面A1CD;
(2)求三棱錐D-A1B1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐,底面為矩形,側(cè)棱,其中,為側(cè)棱上的兩個三等分點(diǎn),如下圖所示.
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且,、分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:面平面;
(3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱柱的側(cè)棱與底面垂直,且,
,,,點(diǎn)、、分別為、、的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•山東)如圖,在四棱臺ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱中,,
為中點(diǎn),上一點(diǎn),且.
(1)當(dāng)時,求證:平面;
(2)若直線與平面所成的角為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com