如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面
底面,且,、分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:面平面;
(3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說(shuō)明理由.
(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)線段上存在點(diǎn),使得二面角的余弦值為.
解析試題分析:(1)連接經(jīng)過(guò)點(diǎn),利用中位線得到,再由直線與平面平行的判定定理得到
平面;(2)利用平面與平面垂直的性質(zhì)定理結(jié)合側(cè)面底面得到平面,從而得到,再由勾股定理證明,結(jié)合直線與平面垂直的判定定理證明平面,最后利用平面與平面垂直的判定定理得到平面平面;(3)取的中點(diǎn),連接、,
利用平面與平面垂直的性質(zhì)定理證明平面,然后以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,利用空間向量法解決題中二面角問(wèn)題.
(1)證明:連接,由正方形性質(zhì)可知,與相交于的中點(diǎn),
也為中點(diǎn),為中點(diǎn).
所以在中,,
又平面,平面,
所以平面;
(2)證明:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/9/1tz5m3.png" style="vertical-align:middle;" />平面,平面面
為正方形,,平面,所以平面.
又平面,所以.
又,所以是等腰直角三角形,且,即.
又,且、面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐P—ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn).已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DFE;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在平行四邊形中,,.將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且.
(1)求證:EF∥平面BDC1;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點(diǎn).
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點(diǎn)M在線段PD上.
(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點(diǎn)M的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱是直棱柱,.點(diǎn)分別為和的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com