16.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最大值與最小值的差為4.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得目標(biāo)函數(shù)的最值,作差得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x-y=0}\end{array}\right.$,解得A(1,1),
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,解得B(1,3),
化目標(biāo)函數(shù)z=x+2y為y=$-\frac{x}{2}+\frac{z}{2}$,由圖可知,當(dāng)直線y=$-\frac{x}{2}+\frac{z}{2}$分別過點A、B時,直線y=$-\frac{x}{2}+\frac{z}{2}$在y軸上的截距取最小、最大值.
分別為:3、7.
∴z=x+2y的最大值與最小值的差為7-3=4.
故答案為:4.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某電信運營商推出每月資費套餐業(yè)務(wù),服務(wù)和收費標(biāo)準(zhǔn)如下表:
套餐費(元)免費主叫時長(分鐘)免費主叫時長收費(元/分鐘)免費數(shù)據(jù)流量(MB)超出數(shù)據(jù)流量收費(元/MB)
38500.253000.29
48500.255000.29
581000.195000.29
882200.197000.29
小明根據(jù)自己每月平均主叫時長和使用數(shù)據(jù)流量的情況(其它費用不計),認為選擇58元套餐最省錢,則他每月平均主叫時長和使用數(shù)據(jù)流量可能為( 。
A.60分鐘和300 MBB.70分鐘和500 MBC.100分鐘和650 MBD.150分鐘和550 MB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC的三個頂點都在球O的球面上,若∠BAC=90°,AB=AC=2,若球O的表面積為12π,則球心O到平面ABC的距離等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等比數(shù)列{an}中,a1+a4+a7=3,a3+a6+a9=27,則數(shù)列{an}前9項的和S9等于( 。
A.39B.21C.39或21D.21或36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)全集U=R,集合A={x|y=lgx},B={x|x2-3x>4},則A∩(∁UB)=( 。
A.{x|0≤x≤4}B.{x|-1≤x≤4}C.{x|-1≤x≤0}D.{x|0<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.2000年5月,位于咸陽市的陜西省石化建設(shè)公司在其院后取土?xí)r,發(fā)現(xiàn)西漢古墓3座,咸陽市文物考古研究所派人對其進行了清理,發(fā)現(xiàn)了較多的文物.其中有一件串飾,如圖所示的是一串黑白相間排列的珠子.請問以左邊第一顆珠子算起,按照這種規(guī)律排列下去,那么第36顆珠子的顏色是( 。
A.白色B.黑色C.白色的可比性大D.黑色的可能性大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知四面體ABCD的頂點都在同一個球的球面上,BC=$\sqrt{3}$,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為$\frac{{4\sqrt{3}}}{3}$,則該球的球面面積為23π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的焦點到漸近線的距離為$\frac{1}{2}a$,則C的漸近線方程為( 。
A.$y=±\frac{1}{4}x$B.$y=±\frac{1}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC的外心為O,|AB|=2,|AC|=4,M是BC中點,則$\overrightarrow{AO}•\overrightarrow{AM}$=5.

查看答案和解析>>

同步練習(xí)冊答案