1.2000年5月,位于咸陽市的陜西省石化建設公司在其院后取土時,發(fā)現(xiàn)西漢古墓3座,咸陽市文物考古研究所派人對其進行了清理,發(fā)現(xiàn)了較多的文物.其中有一件串飾,如圖所示的是一串黑白相間排列的珠子.請問以左邊第一顆珠子算起,按照這種規(guī)律排列下去,那么第36顆珠子的顏色是( 。
A.白色B.黑色C.白色的可比性大D.黑色的可能性大

分析 根據(jù)黑白珠子的規(guī)律進行判斷即可.

解答 解:從第一個開始,每5顆珠子作為一個整體,
則前3顆為白珠子,后2顆為黑珠子,
則36顆珠子為第8組的第一個珠子,則為白色,
故選:A.

點評 本題主要考查歸納推理的應用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是( 。
A.90B.45C.120D.180

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-4x+a+3:
(1)若函數(shù)y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(2)設函數(shù)g(x)=x+b,當a=3時,若對任意的x1∈[1,4],總存在x2∈[5,8],使得g(x1)=f(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy,直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù)).在以O為極點,x軸正半軸為極軸建立極坐標系中,曲線C:ρ=4sinθ.
(1)當m=-1,α=30°時,判斷直線l與曲線C的位置關系;
(2)當m=1時,若直線與曲l線C相交于A,B兩點,設P(1,0),且||PA|-|PB||=1,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最大值與最小值的差為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a∈R,直線l:x+ay+a-2=0,圓M:(x-1)2+(y-1)2=1,則“a=0”是“直線l與圓M相切”的(  )
A.充分不必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結論正確的是①②④.(寫出所有正確結論的序號)
①?x∈(-∞,1),f(x)>0;
②?x0∈R,使${a^{x_0}}$,${b^{x_0}}$,${c^{x_0}}$不能構成一個三角形的三條邊長;
③若△ABC為直角三角形,對于?n∈N*,f(2n)>0恒成立.
④若△ABC為鈍角三角形,則?x0∈(1,2),使f(x0)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設實數(shù)x,y滿足$\left\{{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-2y≤0}\end{array}}\right.$,則目標函數(shù)z=y-lnx的最小值為1-ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l:(2+m)x+(1-2m)y+4-3m=0,則直線恒過一定點M的坐標為(-1,-2),若直線l與直線x-2y-4=0垂直,則m=0.

查看答案和解析>>

同步練習冊答案