已知集合,集合,其中,均為實(shí)數(shù).

(1)從集合A到集合B能構(gòu)成多少個(gè)不同的映射?

(2)能構(gòu)成多少個(gè)以集合A為定義域,以集合B為值域的不同函數(shù)?

答案:16個(gè);14個(gè)
解析:

解:(1)因?yàn)榧?/FONT>A中的每個(gè)元素與集合B中元素的對應(yīng)方法都有2種,由分步計(jì)數(shù)原理,構(gòu)成AB的映射有個(gè).

(2)(1)的映射中,、、、均對應(yīng)于同一元素的情形構(gòu)不成以集合A為定義域,以集合B為值域的函數(shù),這樣的映射有2個(gè).所以,構(gòu)成以集合A為定義域,以集合B為值域的函數(shù)有162=14個(gè).


提示:

解析:由映射的定義可知:集合B中的每一個(gè)元素在集合A中均要有原象,因此只要從問題(1)的映射數(shù)中減去A中四個(gè)元素均對應(yīng)B中一個(gè)元素的情況種數(shù)即可得到(2)的解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(北京卷) 題型:044

已知集合A={a1,a2,…ax}(k≥2),其中,由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:,.其中(a,b)是有序數(shù)對,集合S和T中的元素個(gè)數(shù)分別為m和n.若對于任意的,總有,則稱集合A具有性質(zhì)P.

(1)

檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;

(2)

對任何具有性質(zhì)P的集合A,證明:;

(3)

判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省梅山縣東山中學(xué)2012屆高三第二次月考數(shù)學(xué)理科試題 題型:044

已知集合A={a1,a2,…,ak}(k≥2),其中aiZ(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個(gè)數(shù)分別為m和m.若對于任意的a∈A,總有,則稱集合A具有性質(zhì)P.

(Ⅰ)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P,并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;

(Ⅱ)對任何具有性質(zhì)P的集合A,證明:;

(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆北京市高一第一學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知集合,若集合,且對任意的,存在,使得(其中),則稱集合為集合的一個(gè)元基底.

(Ⅰ)分別判斷下列集合是否為集合的一個(gè)二元基底,并說明理由;

    ①,;

,.

(Ⅱ)若集合是集合的一個(gè)元基底,證明:;

(Ⅲ)若集合為集合的一個(gè)元基底,求出的最小可能值,并寫出當(dāng)取最小值時(shí)的一個(gè)基底.


 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆北京市海淀區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)

已知集合,若集合,且對任意的,存在,使得(其中),則稱集合為集合的一個(gè)元基底.

(Ⅰ)分別判斷下列集合是否為集合的一個(gè)二元基底,并說明理由;

    ①,

,.

(Ⅱ)若集合是集合的一個(gè)元基底,證明:;

(Ⅲ)若集合為集合的一個(gè)元基底,求出的最小可能值,并寫出當(dāng)取最小值時(shí)的一個(gè)基底.


 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合,若集合,且對任意的,存在,使得(其中),則稱集合為集合的一個(gè)元基底.

(Ⅰ)分別判斷下列集合是否為集合的一個(gè)二元基底,并說明理由;

    ①,;

.

(Ⅱ)若集合是集合的一個(gè)元基底,證明:;

(Ⅲ)若集合為集合的一個(gè)元基底,求出的最小可能值,并寫出當(dāng)取最小值時(shí)的一個(gè)基底.

查看答案和解析>>

同步練習(xí)冊答案