計算:sin
4
cos
4
+tan
11π
6
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:原式中的角度變形后,利用誘導公式化簡即可得到結果.
解答: 解:原式=
1
2
sin
2
+tan
11π
6
=
1
2
sin(2π+
π
2
)+tan(2π-
π
6
)=
1
2
-
3
3
點評:此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
2x+y-5≥0
x-2y≤0
x+3y-10≤0
,若z=x+y,則z的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式:
(1)log 
1
2
2
+(log34+log38)(log23+log29)-log2
432
;
(2)(
3
5
0+2-2×(
9
4
- 
1
2
-(0.01) 
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(
π
2
+θ)=
3
5
,θ∈(
2
,2π),則sin2θ
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5},A={3,5},則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x2+a,x>2
x+a2,x≤2
,若對于任意實數(shù)b,關于x的方程f(x)=b在R上恒有解,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設 z=1-i,則 
2
z
+z2=( 。
A、-1-iB、-l+i
C、1-iD、l+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,且a2=b2+c2+bc,a=
3
,S為△ABC的面積,圓O是△ABC的外接圓,P是圓 O上一動點,當S+
3
cosBcosC取得最大值時,
PA
PB
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間直角坐標系中已知點P(0,0,
3
)和點C(-1,2,0),則在y上到P,C的距離相等的點M的坐標是( 。
A、(0,1,0)
B、(0,
1
2
,0)
C、(0,-
1
2
,0)
D、(0,2,0)

查看答案和解析>>

同步練習冊答案