【題目】已知函數(shù)f(x)= ,a,b∈R,a≠0,b≠0,f(1)= ,且方程f(x)=x有且僅有一個(gè)實(shí)數(shù)解;
(1)求a、b的值;
(2)當(dāng)x∈( , ]時(shí),不等式(x+1)f(x)>m(m﹣x)﹣1恒成立,求實(shí)數(shù)m的范圍.
【答案】
(1)解:∵f(x)= ,且f(1)= ;
∴ ,即a+b=2;
又 只有一個(gè)實(shí)數(shù)解;
∴x 有且僅有一個(gè)實(shí)數(shù)解為0;
∴b=1,a=1;
∴f(x)=
(2)解:∵x∈( , ];
∴x+1>0;
∴(x+1)f(x)>m(m﹣x)﹣1恒成立(1+m)x>m2﹣1;
當(dāng)m+1>0時(shí),即m>﹣1時(shí),有m﹣1<x恒成立m<x+1m<(x+1)min
∴﹣1<m≤ ;
當(dāng)m+1<0,即m<﹣1時(shí),同理可得m>(x+1)max= ;
∴此時(shí)m不存在.
綜上:m∈(﹣1, ]
【解析】(1)根據(jù)題意,直接帶入f(1),同時(shí)考慮f(x)=x有且僅有一個(gè)實(shí)數(shù)解,故可求出a.b值;(2)當(dāng)x∈( , ]時(shí),不等式(x+1)f(x)>m(m﹣x)﹣1恒成立,即可轉(zhuǎn)化為:(x+1)f(x)>m(m﹣x)﹣1恒成立(1+m)x>m2﹣1;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0且0<x<c時(shí),f(x)>0,
(1)證明:是f(x)=0的一個(gè)根;
(2)試比較與c的大;
(3)證明:-2<b<-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中為的中點(diǎn)。
(1)求證:;
(2)若點(diǎn)為四邊形內(nèi)部及其邊界上的點(diǎn),且三棱錐的體積為三棱柱體積的,試在圖中畫出點(diǎn)的軌跡,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=|x﹣1|+m|x﹣2|+6|x﹣3|在x=2時(shí)取得最小值,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè), .
(Ⅰ)求曲線在點(diǎn)處的切線方程.
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
(Ⅲ)求的取值范圍,使得對(duì)任意成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和的距離之和為.
(1)求動(dòng)點(diǎn)軌跡的方程;
(2)設(shè),過點(diǎn)作直線,交橢圓于不同于的兩點(diǎn),直線, 的斜率分別為, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[1,+∞)上的函數(shù),且f(x)= ,則函數(shù)y=2xf(x)﹣3在區(qū)間(1,2016)上的零點(diǎn)個(gè)數(shù)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn是{}的前n項(xiàng)和,則的最小值為________.
【答案】4
【解析】
成等比數(shù)列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分離常數(shù)法化簡(jiǎn)后,利用基本不等式求出式子的最小值.
∵成等比數(shù)列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
當(dāng)且僅當(dāng)n+1=時(shí)取等號(hào),此時(shí)n=2,且取到最小值4,
故答案為:4.
【點(diǎn)睛】
本題考查了等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,等比中項(xiàng)的性質(zhì),基本不等式求最值,在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.
【題型】填空題
【結(jié)束】
17
【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 , , 滿足:| |=| |=1, =﹣ ,< ﹣ , ﹣ >=60°,則| |的最大值為( )
A.2
B.
C.
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com