若ax>1的解集為{x|x<0}且函數(shù)y=lo
g
 
a
(x+
1
x
)
的最大值為-1,則實數(shù)a的值為( 。
A、2
B、
1
2
C、3
D、
1
4
考點:函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先確定0<a<1,再利用y=lo
g
 
a
(x+
1
x
)
的最大值為-1,x+
1
x
≥2,即可求出實數(shù)a的值.
解答: 解:∵ax>1的解集為{x|x<0},
∴0<a<1,
∵y=lo
g
 
a
(x+
1
x
)
的最大值為-1,x+
1
x
≥2,
∴a-1=2,
∴a=
1
2
,
故選:B.
點評:本題考查函數(shù)的最值及其幾何意義,考查基本不等式的運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

橢圓的長軸長為10,一個焦點坐標為(4,0),則它的標準方程為( 。
A、
x2
5
+
y2
3
=1
B、
x2
25
+
y2
9
=1
C、
y2
25
+
x2
9
=1
D、
y2
5
+
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(2a-1)x-3
(Ⅰ)當a=2時,若∈[-2,3],求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)在[-2,3]上的最小值為g(a).
①求函數(shù)g(a)的表達式;
②是否存在實數(shù)a,使得g(a)=1,若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(loga
2
3
2<1,則a∈
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-(x-3)2+18在[2,6]的最大值和最小值分別是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,正確的是
 
  (填上所有正確的序號)
①數(shù)據(jù)4、6、7、7、9、4的眾數(shù)是4;
②一個人打靶時連續(xù)射擊兩次,則事件“至少有一次中靶”與事件“兩次都不中靶”互為對立事件;
③如果數(shù)據(jù)x1、x2、…、xn的平均數(shù)為3,方差為0.2,則3x1+5,3x2+5,…,3xn+5的平均數(shù)和方差分別為14和1.8;
④數(shù)據(jù)4、6、7、7、9、4的中位數(shù)是6.5;
⑤把四進制數(shù)1000(4)化為二進制數(shù)是1000000(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+x-b零點x0∈(n,n+1)(n∈Z),其中常數(shù)a,b滿足2a=3,3b=2,則n的值是( 。
A、-1B、-2C、0D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2tan(2x-1)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)滿足f(x+1)=f(1-x),若當x∈(-1,1)時f(x)=lg
1+x
1-x
,且f(2014-a)=1,則實數(shù)a的值可以是(  )
A、-
11
9
B、
11
9
C、-
9
11
D、
9
11

查看答案和解析>>

同步練習冊答案