設數(shù)列{an}滿足:an+1=an+
1
n(n+1)
,a20=1,則a1=( 。
A、
1
20
B、
1
21
C、
2
21
D、
1
10
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:把給出的數(shù)列遞推式裂項,得到a20=(
1
19
-
1
20
)+(
1
18
-
1
19
)+…+(1-
1
2
)+a1
,整理后代入a20=1求得a1的值.
解答: 解:由an+1=an+
1
n(n+1)
,得:
an+1-an=
1
n
-
1
n+1
,
∴a20=(a20-a19)+(a19-a18)+…+(a2-a1)+a1,
a20=(
1
19
-
1
20
)+(
1
18
-
1
19
)+…+(1-
1
2
)+a1
,
∵a20=1,
∴1=1-
1
20
+a1
a1=
1
20

故選:A.
點評:本題考查數(shù)列遞推式,考查了裂項法求數(shù)列的通項公式,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右支上一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,下列命題正確的是(  )
A、雙曲線的焦點到漸近線的距離為a
B、若|PF1|=e|PF2|,則e的最大值為
3
C、△PF1F2的內(nèi)切圓的圓心的橫坐標為b
D、若∠F1PF2的外角平分線交x軸與M,則
|MF1|
|PF1|
=e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x=4”是“x2-4x=0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD是正方形,PA=AD=2,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點,則PE與FD所成角的余弦值為( 。
A、-
2
5
B、-
1
2
C、
2
5
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙、丁四位同學各自對A,B兩變量的線性相關性作試驗,并用回歸分析方法分別求得相關系數(shù)r與殘差平方和m如下表:
r 0.82 0.78 0.69 0.85
m 93 96 101 90
則( 。┩瑢W的試驗結(jié)果體現(xiàn)A,B兩變量有更強的線性相關性.
A、甲B、乙C、丙D、丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若θ=-5,則角θ的終邊在第( 。┫笙蓿
A、四B、三C、二D、一

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,將等腰直角△ABC沿斜邊BC上的高AD折成一個二面角,使得∠B′AC=60°.那么這個二面角大小是( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[-
π
3
3
].
(1)求函數(shù)y=cosx的值域;
(2)求函數(shù)y=-3sin2x-4cosx+4的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-4x+(2-a)lnx(a∈R,a≠0).
(1)當a=8時,求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案