【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面.

1)求證:;

2)在線段上(含端點(diǎn))是否存在點(diǎn)P,使直線與平面所成的角的正弦值為?若存在,求的值,若不存在,說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2)存在;.

【解析】

1)根據(jù)題意可知,然后根據(jù)面面垂直的性質(zhì)定理可知平面,進(jìn)一步可得結(jié)果.

2)建立空間直角坐標(biāo)系,假設(shè)計(jì)算平面的一個(gè)法向量,以及,然后根據(jù),計(jì)算可得.

1)證明:直三棱柱中,

平面平面,平面平面

所以平面,

因?yàn)?/span>平面,所以.

2)假設(shè)線段上(含端點(diǎn))存在點(diǎn)P

使直線與平面所成的角的正弦值為,

A為原點(diǎn),x軸,y軸,z軸,

建立空間直角坐標(biāo)系,如圖

設(shè),

,,

所以,

設(shè)平面的法向量,

,得,

因?yàn)橹本與平面所成的角正弦值為

設(shè)直線與平面所成的角為,

所以,

解得,或(舍)

所以在線段上(含端點(diǎn))存在點(diǎn)P

使直線與平面所成的角正弦值為,

解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),)的部分圖象如圖所示,則下列結(jié)論正確的是(

A.

B.若把函數(shù)的圖像向左平移個(gè)單位,則所得函數(shù)是奇函數(shù)

C.若把的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變,得到的函數(shù)在上是增函數(shù)

D.,若恒成立,則的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“支付寶捐步”已經(jīng)成為當(dāng)下最熱門(mén)的健身方式,為了了解是否使用支付寶捐步與年齡有關(guān),研究人員隨機(jī)抽取了5000名使用支付寶的人員進(jìn)行調(diào)查,所得情況如下表所示:

50歲以上

50歲以下

使用支付寶捐步

1000

1000

不使用支付寶捐步

2500

500

(1)由上表數(shù)據(jù),能否有99.9%的把握認(rèn)為是否使用支付寶捐步與年齡有關(guān)?

(2)55歲的老王在了解了捐步功能以后開(kāi)啟了自己的捐步計(jì)劃,可知其在捐步的前5天,捐步的步數(shù)與天數(shù)呈線性相關(guān).

第x天

第1天

第2天

第3天

第4天

第5天

步數(shù)

4000

4200

4300

5000

5500

(i)根據(jù)上表數(shù)據(jù),建立關(guān)于的線性回歸方程;

(ii)記由(i)中回歸方程得到的預(yù)測(cè)步數(shù)為,若從5天中任取3天,記的天數(shù)為X,求X的分布列以及數(shù)學(xué)期望.

附參考公式與數(shù)據(jù):,;K2=

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上一動(dòng)點(diǎn)A的坐標(biāo)為.

1)求點(diǎn)A的軌跡E的方程;

2)點(diǎn)B在軌跡E上,且縱坐標(biāo)為.

i)證明直線AB過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);

ii)分別以A,B為圓心作與直線相切的圓,兩圓公共弦的中點(diǎn)為H,在平面內(nèi)是否存在定點(diǎn)P,使得為定值?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形ABCD中,ADBC,ABBC,BDDC,點(diǎn)EBC的中點(diǎn).將△ABD沿BD折起,使ABAC,連接AEAC,DE,得到三棱錐ABCD.

1)求證:平面ABD⊥平面BCD

2)若AD=1,二面角CABD的余弦值為,求二面角BADE的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

)當(dāng)時(shí),判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,且取相等的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),設(shè)點(diǎn)

()將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;

()設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)的坐標(biāo)為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),且以線段為直徑的圓過(guò)橢圓的右頂點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上任意一點(diǎn),過(guò)點(diǎn)軸于點(diǎn),延長(zhǎng)到點(diǎn),使.

1)求點(diǎn)M的軌跡E的方程;

2)過(guò)點(diǎn)作圓O的切線l,交(1)中曲線E兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案