分析 先求出兩條動直線經(jīng)過的定點A和B,注意到兩條動直線相互垂直的特點,則有PA⊥PB;再根據(jù)直角三角形斜邊的中線等于斜邊的一半,求出PC.
解答 解:由題意可知,動直線x+my=0經(jīng)過定點A(0,0),
動直線mx-y-m+3=0即m(x-1)-y+3=0,經(jīng)過點定點B(1,3),
注意到動直線x+my=0和動直線mx-y-m+3=0始終垂直,P又是兩條直線的交點,
則有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.
根據(jù)直角三角形斜邊的中線等于斜邊的一半,得|PC|=$\frac{\sqrt{10}}{2}$.
故答案為:$\frac{\sqrt{10}}{2}$.
點評 本題考查了直線恒過定點的應(yīng)用問題,特別是“兩條直線相互垂直”這一特征是解題的突破口,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2或6 | B. | 0或4 | C. | -1 或$\sqrt{3}$ | D. | -1或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$±\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=3sin$\frac{1}{2}$x′ | B. | y′=$\frac{1}{3}$sin2x′ | C. | y′=$\frac{1}{2}$sin2x′ | D. | y′=3sin2x′ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com