【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
【答案】解:設W(t)表示商品的日銷售額(單位:元)與時間t的函數(shù)關系,
則有:W(t)=f(t)g(t)
= =
= ,
當0≤t<15,t∈N+時,易得t=3時,W(t)取最大,且為W(3)=243;
當15≤t≤30,t∈N+時,[15,30]為減函數(shù),則t=15時,W(t)取最大,且為W(15)=195.
所以當t=3時,該商品的日銷售額最大,且為243
【解析】設W(t)表示商品的日銷售額(單位:元)與時間t的函數(shù)關系,則有:W(t)=f(t)g(t),對每段化簡和配方,根據(jù)二次函數(shù)的性質(zhì),分別求解每段函數(shù)的最大值,由此能求出商品的日銷售額W(t)的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,
續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
保費 |
隨機調(diào)查了該險種的400名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
頻數(shù) | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”.求的估計值;
(Ⅱ)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的190%”.
求的估計值;
(III)求續(xù)保人本年度的平均保費估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域是一切實數(shù),則m的取值范圍是( )
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則不等式x5f(x)>0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個函數(shù)中,在(0,+∞)上為增函數(shù)的是( )
A.f(x)=3﹣x
B.f(x)=x2﹣3x
C.f(x)=﹣
D.f(x)=﹣|x|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數(shù)為 X,求 X的分布列和數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2﹣2x.
(1)畫出f(x)的簡圖,并求f(x)的解析式;
(2)利用圖象討論方程f(x)=k的根的情況.(只需寫出結果,不要解答過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù)f(x)=loga(2+x)﹣loga(2﹣x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說明理由;
(Ⅲ)求使f(x)>0的x的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com