分析 (Ⅰ)設(shè)點(diǎn)M的坐標(biāo)為(x,y),則由題意知點(diǎn)P的坐標(biāo)為(x,2y),根據(jù)P在圓上求得M點(diǎn)軌跡方程.
(Ⅱ)設(shè)出直線方程,與橢圓方程聯(lián)立,利用韋達(dá)定理及斜率公式,即可證明結(jié)論.
解答 解:(Ⅰ)設(shè)點(diǎn)M的坐標(biāo)為(x,y),則由題意知點(diǎn)P的坐標(biāo)為(x,2y)
因?yàn)镻在圓O:x2+y2=4,所以x2+4y2=4
故所求動(dòng)點(diǎn)M的軌跡方程為$\frac{x^2}{4}+{y^2}=1$.…(4分)
(Ⅱ)方法一:由題意知直線l斜率不為0,設(shè)直線l方程為x=my+1,B(x1,y1),D(x2,y2)
由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my+1\end{array}\right.$消去x,得(m2+4)y2+2my-3=0,
易知△=16m2+48>0,得${y_1}+{y_2}=\frac{-2m}{{{m^2}+4}},{y_1}{y_2}=\frac{-3}{{{m^2}+4}}$…(8分)${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{y_1}{y_2}}}{{(m{y_1}-1)(m{y_2}-1)}}=\frac{{{y_1}{y_2}}}{{{m^2}{y_1}{y_2}-m({y_1}+{y_2})+1}}$=$\frac{-3}{{-3{m^2}+2{m^2}+{m^2}+4}}=-\frac{3}{4}$.所以${k_1}{k_2}=-\frac{3}{4}$為定值…(12分)
方法二:(。┊(dāng)直線l斜率不存在時(shí),$B(1,-\frac{{\sqrt{3}}}{2})\;,\;D(1,\frac{{\sqrt{3}}}{2})$
所以${k_1}{k_2}=\frac{{-\frac{{\sqrt{3}}}{2}}}{1-2}•\frac{{\frac{{\sqrt{3}}}{2}}}{1-2}=-\frac{3}{4}$…(6分)
(ⅱ)當(dāng)直線l斜率存在時(shí),設(shè)直線l方程為y=k(x-1),B(x1,y1),D(x2,y2)
由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y,得(1+4k2)x2-8k2x+4k2-4=0,
易知△=48k2+16>0,${x_1}+{x_2}=\frac{{8{k^2}}}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4{k^2}-4}}{{1+4{k^2}}}$…(8分)${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{k^2}({x_1}-1)({x_2}-1)}}{{({x_1}-2)({x_2}-2)}}=\frac{{{k^2}[{{x_1}{x_2}-({x_1}+{x_2})+1}]}}{{{x_1}{x_2}-2({x_1}+{x_2})+4}}$=$\frac{{{k^2}(4{k^2}-4-8{k^2}+1+4{k^2})}}{{4{k^2}-4-16{k^2}+4+16{k^2}}}=-\frac{3}{4}$.
所以${k_1}{k_2}=-\frac{3}{4}$為定值…(12分)
點(diǎn)評(píng) 本題主要考查軌跡方程的求解和直線與圓錐曲線的綜合問(wèn)題,屬于難度較大的題,高考經(jīng)常涉及.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=e為函數(shù)f(x)的極大值點(diǎn) | B. | x=e為函數(shù)f(x)的極小值點(diǎn) | ||
C. | $x=\frac{1}{e}$為函數(shù)f(x)的極大值點(diǎn) | D. | $x=\frac{1}{e}$為函數(shù)f(x)的極小值點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{7}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com