在復(fù)平面內(nèi)作出表示下列各復(fù)數(shù)的點(diǎn)
(1)z1=2+2i  
(2)z2=-3+i   
(3)z3=-i.
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的幾何意義:在復(fù)平面中,實(shí)部對(duì)應(yīng)橫坐標(biāo),虛部對(duì)應(yīng)縱坐標(biāo),可得三個(gè)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn).
解答: 解:復(fù)平面內(nèi)各復(fù)數(shù)的點(diǎn)的點(diǎn),如下圖所示:

其中A代表(1)z1=2+2i;
B代表(2)z2=-3+i; 
C代表(3)z3=-i.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)數(shù)的代數(shù)表示及其幾何意義,熟練掌握復(fù)數(shù)的幾何意義是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x>1的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)(1-i)(2i+m)是純虛數(shù),則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若2ccosB=2a+b,△ABC的面積為S=
3
12
c,則ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)和圓O:x2+y2=a2+b2,橢圓C的左右焦點(diǎn)分別為F1、F2,過橢圓上一點(diǎn)P和原點(diǎn)O的直線交圓O于M、N兩點(diǎn).若|PF1|•|PF2|=5,則|PM|•|PN|的值為( 。
A、1B、3C、5D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+2
(1)若f(x)在x=1時(shí)有極值-1,求b,c的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象與函數(shù)y=k的圖象恰有三個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
sin(π+x)•sin(
2
-x)-cos2x,
(1)求f(x)的最小正周期;
(2)若α∈[-
π
2
,0],f(
1
2
α+
π
3
)=
1
10
,求sin(2α-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點(diǎn)為F1,F(xiàn)2.若橢圓上存在點(diǎn)Q,使∠F1QF2=120°,橢圓離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

室內(nèi)有直尺,無論怎樣放置,在地面上總有這樣的直線,它與直尺所在的直線
 
(從“異面”、“相交”、“平行”、“垂直”中選填一個(gè))

查看答案和解析>>

同步練習(xí)冊(cè)答案