【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點,,

.

(1)求證:;

(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

【答案】(1)證明過程詳見解析;(2).

【解析】

試題分析:本題主要考查線線垂直、線面垂直、面面垂直、二面角等基礎(chǔ)知識,考查學(xué)生的空間想象能力、邏輯推理能力、計算能力.第一問,由已知得,,所以利用線面平行的判定得平面,再利用線面垂直的性質(zhì),得;第二問,可以利用傳統(tǒng)幾何法求二面角的平面角,也可以利用向量法求平面和平面的法向量,利用夾角公式列出方程,通過解方程,求出線段的長度..

(1)證明:底面和側(cè)面是矩形,

平面 3分

平面 6分

(2)

解法1:延長,交于,連結(jié),

則平面平面

底面是矩形, 的中點,,連結(jié),則

又由(1)可知

,

底面平面 9

,連結(jié),是平面與平面平面與平面所成銳二面角的平面角,所以

又易得,,從而由,求得 12分

解法2:由(1)可知

,底面 7分

設(shè)的中點,以為原點,以,,所在直線分別為軸,建立空間直角坐標(biāo)系如圖. 8分

設(shè),則,,

設(shè)平面的一個法向量

,

,得

,得 9分

設(shè)平面法向量為,因為 ,,

,得 10分

由平面與平面所成的銳二面角的大小為

,解得. 即線段的長度為 12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時,討論單調(diào)性;

(2)若,且當(dāng)時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域為,對給定的正數(shù),若存在閉區(qū)間,使得函數(shù)滿足:①內(nèi)是單調(diào)函數(shù);②上的值域為,則稱區(qū)間級“理想?yún)^(qū)間”.下列結(jié)論錯誤的是( )

A. 函數(shù))存在1級“理想?yún)^(qū)間”

B. 函數(shù))不存在2級“理想?yún)^(qū)間”

C. 函數(shù))存在3級“理想?yún)^(qū)間”

D. 函數(shù), 不存在4級“理想?yún)^(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程為),圓的參數(shù)方程為: (其中為參數(shù)).

(1)判斷直線與圓的位置關(guān)系;

(2)若橢圓的參數(shù)方程為為參數(shù)),過圓的圓心且與直線垂直的直線與橢圓相交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐中, 平面,底面是正方形, .

(1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);

(2)求點、分別是棱的中點,求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據(jù)測量,在同一時刻測得, .(船只與無人機的大小及其它因素忽略不計)

(1)求此時無人機到甲、丙兩船的距離之比;

(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形中, ,沿對角線折起,使點在平面上的射影落在上.

(1)求證:平面平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=﹣x3
B.y=
C.y=x
D.y=

查看答案和解析>>

同步練習(xí)冊答案