如圖,在正三棱錐A-BCD中,E、F分別是AB、BC的中點,EF⊥DE,且BC=1,則正三棱錐A-BCD的體積是   
【答案】分析:根據(jù)EF與DE的垂直關(guān)系,結(jié)合正棱錐的性質(zhì),判斷三條側(cè)棱互相垂直,再求得側(cè)棱長,根據(jù)體積公式計算即可.
解答:解:∵E、F分別是AB、BC的中點,∴EF∥AC,又∵EF⊥DE,
∴AC⊥DE,∵正三棱錐A-BCD,∴AC⊥BD,
又DE∩BD=D,∴AC⊥平面ABD;
∴AC⊥AB,
設(shè)AC=AB=AD=x,則x2+x2=1⇒x=
VC-ABD=S△ABD•AC=AB•AD•AC=
故答案是
點評:本題考查三棱錐的體積.V棱錐=Sh.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正三棱錐A-BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、DC、CA于點E、F、G、H.
(1)判定四邊形EFGH的形狀,并說明理由.
(2)設(shè)P是棱AD上的點,當AP為何值時,平面PBC⊥平面EFGH,請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱錐A-BCD中,M、N分別是AD、CD的中點,BM⊥MN,則正三棱錐的側(cè)面與底面所成角的正切值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱錐A-BCD中,底面正三角形BCD的邊長為2,點E是AB的中點,AC⊥DE,則正三棱錐A-BCD的體積是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱錐A-BCD中,E、F分別是AB、BC的中點,EF⊥DE,且BC=1,則正三棱錐A-BCD的體積是
2
24
2
24

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年內(nèi)蒙古高三第一次月考理科數(shù)學卷 題型:選擇題

如圖,在正三棱錐ABCD中,點E、F分別是ABBC的中點,,則ABCD的體積為            (    )

    A.         B.   

    C.         D.

                                                              

 

查看答案和解析>>

同步練習冊答案