【題目】張明與張華兩人做游戲,下列游戲中不公平的是(  )

拋擲一枚骰子,向上的點數(shù)為奇數(shù)則張明獲勝,向上的點數(shù)為偶數(shù)則張華獲勝;

同時拋擲兩枚硬幣,恰有一枚正面向上則張明獲勝,兩枚都正面向上則張華獲勝;

從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則張明獲勝,撲克牌是黑色的則張華獲勝;

張明、張華兩人各寫一個數(shù)字68,如果兩人寫的數(shù)字相同張明獲勝,否則張華獲勝.

A. ①② B. C. ②③④ D. ①②③④

【答案】B

【解析】拋擲一枚骰子,向上的點數(shù)為奇數(shù)和偶數(shù)是等可能的,均為,所以公平;

,恰有一枚正面向上包括(,),(,)兩種情況,而兩枚都正面向上僅為(,),因此中游戲不公平.

從一副不含大小王的撲克牌中抽一張,撲克牌是紅色和黑色是等可能的,均為,所以公平;

張明、張華兩人各寫一個數(shù)字68,一共四種情況(6,6),(6,8),(8,6),(8,8),兩人寫的數(shù)字相同和不同是等可能的,均為,所以公平;.

故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知過A(0,1)和且與x軸相切的圓只有一個,求的值及圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將邊長為2的正沿著高折起,使,若折起后四點都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數(shù),得下面柱狀圖.

表示臺機器在三年使用期內需更換的易損零件數(shù),表示臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設這臺機器在購機的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買臺機器的同時應購買個還是個易損零件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】華中師大附中中科教處為了研究高一學生對物理和數(shù)學的學習是否與性別有關,從高一年級抽取60名同學(男同學30名,女同學30名),給所有同學物理題和數(shù)學題各一題,讓每位同學自由選擇一道題進行解答.選題情況如表:(單位:人)

物理題

數(shù)學題

總計

男同學

16

14

30

女同學

8

22

20

總計

24

36

60


(1)在犯錯誤的概率不超過1%的條件下,能否判斷高一學生對物理和數(shù)學的學習與性別有關?
(2)經(jīng)過多次測試后發(fā)現(xiàn),甲每次解答一道物理題所用的時間為5﹣8分鐘,乙每次解答一道物理題所用的時間為6﹣8分鐘,現(xiàn)甲、乙解同一道物理題,求甲比乙先解答完的概率;
(3)現(xiàn)從選擇做物理題的8名女生中任意選取兩人,對他們的解答情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列和數(shù)學期望. 附表及公式:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)的對稱性有如下結論:對于給定的函數(shù),如果對于任意的都有成立為常數(shù)),則函數(shù)關于點對稱.

(1)用題設中的結論證明:函數(shù)關于點;

(2)若函數(shù)既關于點對稱,又關于點對稱,且當時,,求:的值;

時,的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某臺風中心位于海港城市東偏北的150公里外,以每小時公里的速度向正西方向快速移動,2.5小時后到達距海港城市西偏北的200公里處,若,則風速的值為_____公里/小時

查看答案和解析>>

同步練習冊答案