如圖所示,S是邊長(zhǎng)為a的正△ABC所在平面外一點(diǎn),SA=SB=SC=a,E、F分別是SCAB的中點(diǎn).

(1)求異面直線SCAB的距離;

(2)求異面直線SAEF所成的角.

解析:(1)連結(jié)SF、CF,?

∵△SAB、△CAB是正三角形,∴SF=CF=a,且SFBCFAB.?

SFCF=F,∴AB⊥面SFC.?

ABEFF.?

SF=CF,∴△FSC是等腰三角形.?

ESC中點(diǎn),∴FESCE.?

EFSCAB的公垂線段.?

在Rt△SEF中,SF=a,SE=a,?

∴由勾股定理可知EF=.?

因此,異面直線SCAB的距離為.?

(2)取AC中點(diǎn)M,連結(jié)EM、FM.?

E、F、M分別為SC、AB、CA中點(diǎn),?

EMSA,FMCB,?

EM=SA,FM=CB.?

EM=FM=12a.?

∴∠MEFSAEF所成的角或其補(bǔ)角.?

EM=FM=a,EF=a,?

EF2=FM2+EM2,即FMEM.?

∴△EMF是等腰直角三角形.?

∴∠MFE=45°,即SAEF所成的角是45°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)你設(shè)計(jì)一個(gè)紙盒.如圖所示,ABCDEF是邊長(zhǎng)為30cm的正六邊形硬紙片,切去陰影部分所示的六個(gè)全等的四邊形,再沿虛線折起,正好形成一個(gè)無(wú)蓋的正六棱柱形狀的紙盒,G、H分別在AB、AF上,是被切去的一個(gè)四邊形的兩個(gè)頂點(diǎn),設(shè)AG=AH=x(cm).(1)若要求紙盒的側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
(2)若要求紙盒的容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求此時(shí)紙盒的高與底面邊長(zhǎng)的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省威海四中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年學(xué)廣東省梅州市東山中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

同步練習(xí)冊(cè)答案