如圖,在正方體ABCD-A1B1C1D1中,CC1中點為E,則直線AE與BC1所成的角的大小為________.


分析:先通過平移將兩條異面直線平移到同一個起點A,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.
解答:如圖,連接D1A,D1E,∠D1AE(或其補角)為異面直線BC1與AE所成角
設邊長為1,則D1A=,D1E=,AE=,
利用余弦定理得cos∠D1AE==
∴∠D1AE=
故答案為:
點評:本題主要考查了異面直線及其所成的角,以及余弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結論,得到此三棱錐中的一個正確結論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案