【題目】某校對(duì)高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);

(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在的人中共抽取6人,再?gòu)倪@6人中選2人,求2人服務(wù)次數(shù)都在的概率.

【答案】1,,中位數(shù)為;(2)

【解析】

試題分析:1由第一組內(nèi)頻數(shù)為,頻率為可求出總?cè)藬?shù)為,由此可求出第二組的頻率為,并可求頻率直方圖中由頻率之和為可求出,頻率分布直方圖求出面積的一半處求出中位數(shù)即可;2分分層抽樣的原則先求出共抽取人時(shí)在的人數(shù),再列出所有基本事件,可求2人服務(wù)次數(shù)都在的概率.

試題解析:(1)因,所以,所以

,

.

中位數(shù)位于區(qū)間,設(shè)中位數(shù)為,

,所以,所以學(xué)生參加社區(qū)服務(wù)區(qū)次數(shù)的中位數(shù)為17次.

(2)由題意知樣本服務(wù)次數(shù)在有20人,樣本服務(wù)次數(shù)在有4人,

如果用分層抽樣的方法從樣本服務(wù)次數(shù)在的人中共抽取6人,則抽取的服務(wù)次數(shù)在的人數(shù)分別為:.

記服務(wù)次數(shù)在,在的為.

從已抽取的6人任選兩人的所有可能為:

共15種,

設(shè)2人服務(wù)次數(shù)都在為事件,則事件包括

共10種,

所有.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù).

討論的單調(diào)性;

成立,證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:區(qū)域A是正方形OABC(含邊界),區(qū)域B是三角形ABC(含邊界)。

(Ⅰ)向區(qū)域A隨機(jī)拋擲一粒黃豆,求黃豆落在區(qū)域B的概率;

(Ⅱ)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)落在區(qū)域B的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

I)設(shè),求的單調(diào)區(qū)間;

II)若處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

已知O為坐標(biāo)原點(diǎn),向量,點(diǎn)P滿足

)記函數(shù)·,求函數(shù)的最小正周期;

)若O,P,C三點(diǎn)共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的圖象向右平移個(gè)單位后,圖象恰好為函數(shù)的圖象,則的值可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于16毫克時(shí),該產(chǎn)品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;

(2)從甲廠的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,也從乙廠的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線y=f(x)在點(diǎn)(1, f(1))處的切線方程為y=e(x-1)+2.

(1)求 (2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說(shuō)明理由;

(3)關(guān)于的方程上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案