13.設(shè)函數(shù)$f(x)=\frac{x}{x+2}(x>0)$,觀察:${f_1}(x)=f(x)=\frac{x}{x+2}$,${f_2}(x)=f({f_1}(x))=\frac{x}{3x+4}$,${f_3}(x)=f({f_2}(x))=\frac{x}{7x+8}$,${f_4}(x)=f({f_3}(x))=\frac{x}{15x+16}$,…,根據(jù)以上事實,當n∈N*時,由歸納推理可得:fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

分析 根據(jù)已知中函數(shù)的解析式,歸納出函數(shù)解析中分母系數(shù)的變化規(guī)律,進而得到答案.

解答 解:由${f_1}(x)=f(x)=\frac{x}{x+2}$,${f_2}(x)=f({f_1}(x))=\frac{x}{3x+4}$,${f_3}(x)=f({f_2}(x))=\frac{x}{7x+8}$,${f_4}(x)=f({f_3}(x))=\frac{x}{15x+16}$,…
歸納可得:fn(x)=$\frac{x}{({2}^{n}-1)x+{2}^{n}}$,(n∈N*
∴fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.
故答案為$\frac{1}{{{2^{n+1}}-1}}$.

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.直線$\sqrt{3}x+3y+a=0$的傾斜角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.圓柱被一個平面截去一部分后與半球(半徑為 r )組成一個幾何體,該幾何體的三視圖中的正視圖和俯視圖如圖所示,當r=5時,該幾何體的表面積為( 。
A.32+80πB.64+40$\sqrt{2}$πC.64+80πD.100+125π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=-5+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(其中t為參數(shù)),現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.$2π+16+2\sqrt{3}$B.$3π+16+2\sqrt{3}$C.$3π+8+\sqrt{3}$D.$3π+8+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.滿足條件AB=2,AC=$\sqrt{3}$BC的三角形ABC面積的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.小強和小華兩位同學約定下午在大良鐘樓公園噴水池旁見面,約定誰先到后必須等10分鐘,這時若另一人還沒有來就可以離開.如果小強是1:40-2:00到達的,假設(shè)小華在1點到2點內(nèi)到達,且小華在 1點到2點之間何時到達是等可能的,則他們會面的概率是$\frac{17}{24}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知x>0,則$\sqrt{\frac{1}{{x}^{2}+4}}$+$\sqrt{\frac{x}{x+2}}$的取值范圍是(0,$\frac{3\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若復數(shù)z滿足$\frac{1+2i}{z}$=1-i,則復數(shù)z在復平面對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案