8.函數(shù)f(x)=x3-3x2+7的極大值是7.

分析 令f′(x)=0,可得 x=0或 x=2,根據(jù)導(dǎo)數(shù)在x=0和 x=2兩側(cè)的符號(hào),判斷故f(0)為極大值.

解答 解:∵f′(x)=3x2-6x=3x(x-2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
∴函數(shù)f(x)在(-∞,0)是增函數(shù),在(0,2)上是減函數(shù),在(2,+∞)是增函數(shù),
∴函數(shù)f(x)在x=0時(shí)取得極大值7,
故答案為:7.

點(diǎn)評(píng) 本題考查函數(shù)在某點(diǎn)取得極值的條件,利用f′(x)=0,判斷導(dǎo)數(shù)在極值點(diǎn)處左側(cè)大于0,右側(cè)小于0,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求向量$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列命題
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}•\overrightarrow$<0”;
④設(shè)有四個(gè)函數(shù)y=x-1,y=${x^{\frac{1}{2}}}$,y=x2,y=x3其中在(0,+∞)上是增函數(shù)的函數(shù)有3個(gè).
真命題的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}滿足Sn+an=2n+1(n∈N*),其中Sn表示數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求出a1,a2,a3,并推測(cè)數(shù)列{an}的表達(dá)式;
(Ⅱ)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)計(jì)算-5log94+log3$\frac{32}{9}$-5${\;}^{lo{g}_{6}3}$-($\frac{1}{64}$)${\;}^{\frac{2}{3}}$;
(2)解方程:log3(6x-9)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.圓(x+2)2+y2=4與圓x2+y2-2x-2y+1=0(  )
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.以下求方程x5+x3+x2-1=0在[0,1]之間近似根的算法是( 。
x1←0
x2←1
x←(x1+x2)/2
c←0.00001
While x2-x1>c
If x5+x3+x2-1>0then
x2←x
Else
x1←x
End if
x=(x1+x2)/2
End while
Print x.
A.輾轉(zhuǎn)相除法B.二分法C.更相減損術(shù)D.秦九韶算法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知tanx=2,則$\frac{3cosx+2sinx}{4cosx-5sinx}$=-$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={x|x≤$\sqrt{15}$},a=4,則下列關(guān)系成立的是( 。
A.a⊆AB.{a}⊆AC.a∈AD.a∉A

查看答案和解析>>

同步練習(xí)冊(cè)答案