已知△ABC的面積為
1
4
(a2+b2-c2),其中邊a,b,c為角A、B、C所對的邊,則C=
 
考點:余弦定理的應(yīng)用
專題:解三角形
分析:根據(jù)△ABC的面積公式以及已知條件,列出關(guān)系式,再由余弦定理得tanC=1,由此求得C的值.
解答: 解:∵△ABC的面積為
1
4
(a2+b2-c2)=
1
2
ab•sinC,
∴c2=a2+b2-2ab•sinC.
又根據(jù)余弦定理得 c2=a2+b2-2ab•cosC,
∴-2absinC=-2abcosC,即sinC=cosC,∴tanC=1,∴C=45°,
故答案為:45°.
點評:本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算:(i-
1
i
3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lnx+kx-1有兩個零點,則實數(shù)k的取值范圍是( 。
A、(-
1
e2
,0)
B、(-∞,-
1
e2
C、(-
1
e2
,+∞)
D、(-e2,-
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x(x-1)(x-2)…(x-50)在原點處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點F1(-
5
,0),F(xiàn)2
5
,0),M為雙曲線上一點,且
MF1
MF2
=0,
|MF1|
|MF2|
=2.
(Ⅰ)求此雙曲線的方程;
(Ⅱ)若過點P(0,
2
)的直線與雙曲線左支交于A、B兩點,線段AB的垂直平分線與y軸交于點Q(0,b),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:x2-x>lnx,x∈(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
3m2
+
y2
5n2
=1和雙曲線
x2
2m2
-
y2
3n2
=1有公共的焦點,求雙曲線的漸近線方程及離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第四象限角,tanα=-
1
2
,那么5 |log5cosα|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二項式定理證明:(1+
1
k+1
k+1≥2.

查看答案和解析>>

同步練習(xí)冊答案