11.已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)設(shè)過P直線l1與圓C交于M、N兩點,當(dāng)|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

分析 (1)由利用兩點間的距離公式求出圓心C到P的距離,再根據(jù)弦長|MN|的一半及半徑,利用勾股定理求出弦心距d,發(fā)現(xiàn)|CP|與d相等,所以得到P為MN的中點,所以以MN為直徑的圓的圓心坐標即為P的坐標,半徑為|MN|的一半,根據(jù)圓心和半徑寫出圓的方程即可;
(2)把已知直線的方程代入到圓的方程中消去y得到關(guān)于x的一元二次方程,因為直線與圓有兩個交點,所以得到△>0,列出關(guān)于a的不等式,求出不等式的解集即可得到a的取值范圍,利用反證法證明:假設(shè)符合條件的a存在,由直線l2垂直平分弦AB得到圓心必在直線l2上,根據(jù)P與C的坐標即可求出l2的斜率,然后根據(jù)兩直線垂直時斜率的乘積為-1,即可求出直線ax-y+1=0的斜率,進而求出a的值,經(jīng)過判斷求出a的值不在求出的范圍中,所以假設(shè)錯誤,故這樣的a不存在.

解答 解:(1)由于圓C:x2+y2-6x+4y+4=0的圓心C(3,-2),半徑為3,
|CP|=$\sqrt{5}$,而弦心距d=$\sqrt{5}$,
所以d=|CP|=$\sqrt{5}$,所以P為MN的中點,
所以所求圓的圓心坐標為(2,0),半徑為$\frac{1}{2}$|MN|=2,
故以MN為直徑的圓Q的方程為(x-2)2+y2=4;
(2)把直線ax-y+1=0即y=ax+1.代入圓C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直線ax-y+1=0交圓C于A,B兩點,
故△=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.
則實數(shù)a的取值范圍是(-∞,0).
設(shè)符合條件的實數(shù)a存在,
由于l2垂直平分弦AB,故圓心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,
∴kAB=a=$\frac{1}{2}$,
由于$\frac{1}{2}∉(-∞,0)$,
故不存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB.

點評 此題考查學(xué)生掌握直線與圓的位置關(guān)系,靈活運用點到直線的距離公式及兩點間的距離公式化簡求值,以及會利用反證法進行證明,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為$\sqrt{2}$的正方形,AA1=3,E是AA1的中點,過C1作C1F⊥平面BDE與平面ABB1A1交于點F,則$\frac{AF}{{A{A_{1}}}}$等于( 。
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}{x^2}$-2x,當(dāng)x>2時k(x-2)<xf(x)+2g'(x)+3恒成立,則整數(shù)k最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=loga(ax-1)(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2若函數(shù)f(x)的函數(shù)值大于1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線3x+(3a-3)y=0與直線2x-y-3=0垂直,則a的值為( 。
A.1B.2C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若f(x+1)=2x-1,則f(1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.證券公司提示:股市有風(fēng)險,入市需謹慎.小強買的股票A連續(xù)4個跌停(一個跌停:比前一天收市價下跌10%),則至少需要幾個漲停,才能不虧損(一個漲停:比前一天收市價上漲10%).( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=2,則tanα的值為(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)t的值為( 。
A.-9B.-1C.1D.9

查看答案和解析>>

同步練習(xí)冊答案