19.已知函數(shù)f(x)=loga(ax-1)(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2若函數(shù)f(x)的函數(shù)值大于1,求x的取值范圍.

分析 (1)利用真數(shù)大于0,求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的函數(shù)值大于1,分類討論求x的取值范圍.

解答 解:(1)由題意可知ax-1>0,ax>1…(2分)
當a>1時,x>0,所以f(x)的定義域為(0,+∞)…(4分)
當0<a<1時,x<0,所以f(x)的定義域為(-∞,0)…(6分)
(2)loga(ax-1)>1,
當a>1時,ax-1>a,x>loga(a+1),…(8分)
當0<a<1時,ax-1<a,x>loga(a+1),…(10分)
因為f(x)的定義域為(-∞,0),所以0>x>loga(a+1)…(12分)

點評 本題考查函數(shù)的定義域,考查不等式的解法,考查對數(shù)函數(shù)的性質,正確轉化是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設一組數(shù)據(jù)的方差是0.1,將這組數(shù)據(jù)的每個數(shù)據(jù)都乘以10,所得到的一組新數(shù)據(jù)的方差是(  )
A.10B.0.1C.0.001D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函數(shù)f(x)在(1,+∞)上為單調遞增函數(shù),求實數(shù)a的取值范圍;
(2)設m,n∈(0,+∞),且m≠n,求證:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.把半橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(x≥0)與圓。▁-c)2+y2=a2(x<0)合成的曲線稱作“曲圓”,其中F(c,0)為半橢圓的右焦點.如圖,A1,A2,B1,B2
分別是“曲圓”與x軸、y軸的交點,已知∠B1FB2=$\frac{2π}{3}$,扇形FB1A1B2的面
積為$\frac{4π}{3}$.
(1)求a,c的值; 
(2)過點F且傾斜角為θ的直線交“曲圓”于P,Q兩點,試將△A1PQ的周長L表示為θ的函數(shù);
(3)在(2)的條件下,當△A1PQ的周長L取得最大值時,試探究△A1PQ的面積是否為定值?若是,請求出該定值;若不是,請求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-sin\frac{π}{2}x,-3≤x≤0}\\{|lo{g}_{2}x|.x>0}\end{array}\right.$,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+$\frac{1}{{x}_{3}^{2}{x}_{4}}$的取值范圍為( 。
A.(-1,+∞)B.(-1,1)C.(-∞,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+{3}^{x,x≥1}}\\{2x-1,x<1}\end{array}\right.$,則f[f(0)+2]等于( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+1.
(1)若對任意的實數(shù)x都有f(1+x)=f(1-x)成立,求實數(shù) a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調遞增函數(shù),求實數(shù)a的取值范圍;
(3)當x∈[-1,1]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知定義在(1,+∞)上的函數(shù)f(x)滿足下列兩個條件:(1)對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)當x∈(1,2)時,f(x)=-x2+2x.記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個零點,則實數(shù)k的取值范圍是( 。
A.[1,2)B.[$\frac{4}{3}$,2)C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2]

查看答案和解析>>

同步練習冊答案