6.對(duì)于函數(shù)f(x),若存在區(qū)間M=[a,b],使得{y|y=f(x);x∈M}=M,則稱函數(shù)f(x)具有性質(zhì)p,給出下列3個(gè)函數(shù):
①f(x)=sinx
②f(x)=x3-3x
③f(x)=lgx+3
其中具有性質(zhì)p的函數(shù)是②(填入所有滿足條件函數(shù)的序號(hào))

分析 ①對(duì)于函數(shù)f(x)=sinx,根據(jù)其在[-$\frac{π}{2}$,$\frac{π}{2}$]上是單調(diào)增函數(shù),通過分析方程sinx=x在[-$\frac{π}{2}$,$\frac{π}{2}$]上僅有一解,判斷即可;
②通過對(duì)已知函數(shù)求導(dǎo),分析出函數(shù)的單調(diào)區(qū)間,找到極大值點(diǎn)和極小值點(diǎn),并求出極大值b和極小值a,而求得的f(a)與f(b)在[a,b]范圍內(nèi),滿足性質(zhì)P;
③根據(jù)“性質(zhì)P”的定義,函數(shù)存在“區(qū)間M”,只要舉出一個(gè)符合定義的區(qū)間M即可,但要說明函數(shù)沒有“區(qū)間P”,判斷即可

解答 解:①對(duì)于函數(shù)f(x)=sinx,若正弦函數(shù)存在等值區(qū)間[a,b],
則在區(qū)間[a,b]上有sina=a,sinb=b,
由正弦函數(shù)的值域知道[a,b]⊆[-1,1],
但在區(qū)間]⊆[-1,1]上僅有sin0=0,
所以函數(shù)f(x)=sinx不具有性質(zhì)P;
②對(duì)于函數(shù)f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1).
當(dāng)x∈(-1,1)時(shí),f′(x)0.
所以函數(shù)f(x)=x3-3x的增區(qū)間是(-∞,-1),(1,+∞),減區(qū)間是(-1,1).
取M=[-2,2],此時(shí)f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2.
所以函數(shù)f(x)=x3-3x在M=[-2,2]上的值域也為[-2,2],
則具有性質(zhì)P;
③對(duì)于 f(x)=lgx+3,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),
故有$\left\{\begin{array}{l}lga+3=a\\ lgb+3=b\end{array}\right.$,即方程lgx+3=x有兩個(gè)解,這與y=lgx+3和y=x的圖象相切相矛盾.
故③不具有性質(zhì)P.
故答案為:②.

點(diǎn)評(píng) 本題是新定義題,考查了函數(shù)的定義域與值域的關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想,此題中單調(diào)函數(shù)存在好區(qū)間的條件是f(x)=x,正確理解“性質(zhì)P”的定義是解答該題的關(guān)鍵,是中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某菜農(nóng)有兩段總長度為20米的籬笆PA及PB,現(xiàn)打算用它們和兩面成直角的墻OM、ON圍成一個(gè)如圖所示的四邊形菜園OAPB(假設(shè)OM、ON這兩面墻都足夠長).已知|PA|=|PB|=10(米),∠AOP=∠BOP=$\frac{π}{4}$,∠OAP=∠OBP.設(shè)∠OAP=θ,四邊形OAPB的面積為S.
(1)將S表示為θ的函數(shù),并寫出自變量θ的取值范圍;
(2)求出S的最大值,并指出此時(shí)所對(duì)應(yīng)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1上一點(diǎn)與其左頂點(diǎn)、右焦點(diǎn)構(gòu)成以右焦點(diǎn)為直角頂點(diǎn)的等腰三角形,則此雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{2\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=x2-alnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),若f(x)的最小值為1,求a的值;
(3)設(shè)g(x)=f(x)-2x,若g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),證明:g(x1)+g(x2)>-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x)對(duì)任意的x∈(0,+∞)都有f(f(x)-log3x)=4,則不等式f(a2+2a)>4的解集為( 。
A.{a|a<-3或a>1}B.{a|a>1}C.{a|-3<x<1}D.{a|a<-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若不等式組$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面區(qū)域?yàn)槿切危移涿娣e等于$\frac{4}{3}$,則m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知M為△ABC所在平面內(nèi)的一點(diǎn),且$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+n\overrightarrow{AC}$.若點(diǎn)M在△ABC的內(nèi)部(不含邊界),則實(shí)數(shù)n的取值范圍是(0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.正三角形ABC邊長為2,M、N分別為邊AB、AC的中點(diǎn),點(diǎn)P為線段MN上的動(dòng)點(diǎn),則$\overrightarrow{BP}•\overrightarrow{CP}$的取值范圍是[$-\frac{1}{4}$,0];若$\overrightarrow{BP}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則(x+1)•y的最大值為$\frac{7}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案