【題目】下圖為某校數(shù)學專業(yè)N名畢業(yè)生的綜合測評成績(百分制)頻率分布直方圖,已知80-90分數(shù)段的學員數(shù)為21人。

(1)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90-95分數(shù)段內(nèi)的人數(shù);

(2)現(xiàn)欲將90-95分數(shù)段內(nèi)的n名人分配到幾所學校,從中安排2人到甲學校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.

【答案】16;(2

【解析】

試題根據(jù)題中所給的頻率分布直方圖找某些信息即可得結(jié)果,第二問根據(jù)題意找出對應(yīng)的基本事件總數(shù),再找出滿足條件的基本事件數(shù),從而得出結(jié)果.

試題解析:(1分數(shù)段頻率為,此分數(shù)段的學員總數(shù)為人所以畢業(yè)生的總?cè)藬?shù),分數(shù)段內(nèi)的人數(shù)頻率為

,所以分數(shù)段內(nèi)的人數(shù);

2分數(shù)段內(nèi)的人中有兩名男生,名女生設(shè)男生為;女生為,設(shè)安排

結(jié)果中至少有一名男生為事件從中取兩名畢業(yè)生的所有情況(基本事件空間)為

組合方式,每種組合發(fā)生的可能性是相同的其中, 至少有一名男生的種數(shù)為

種, 所以,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形, MPD的中點,PA⊥平面ABCD,PA=AD= 4, AB = 2.

(1)求證:AM⊥平面MCD;

(2)求直線PC與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計劃在某水庫建一座至多安裝4臺發(fā)電機的水電站,過去0年的水文資料顯示,水庫年入流量年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,將年入流量在以上四段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.

(1)求在未來3年中,至多1年的年入流量不低于120的概率;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量的限制,并有如下關(guān)系:

若某臺發(fā)電機運行,則該臺發(fā)電機年利潤為500萬元;若某臺發(fā)電機未運行,則該臺發(fā)電機年虧損1500萬元,水電站計劃在該水庫安裝2臺或3臺發(fā)電機,你認為應(yīng)安裝2臺還是3臺發(fā)電機?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某幾何體直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

1)求證: ;

2;

3設(shè)中點,在邊上找一點,使//平面并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)集具有性質(zhì):對任意的、,兩數(shù)中至少有一個屬于.

1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

2)證明:;

3)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體中, 分別為的中點, 上一個動點,且.

(1)當時,求證:平面平面;

(2)是否存在,使得?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)畫出散點圖并判斷是否線性相關(guān);

(2)如果線性相關(guān),求線性回歸方程;

(3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)求證:當時,對任意都有;

(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案