【題目】如圖,在長方體中, 分別為的中點, 上一個動點,且.

(1)當時,求證:平面平面;

(2)是否存在,使得?若存在,請求出的值;若不存在,請說明理由.

【答案】(1)詳見解析(2)

【解析】試題分析:1時, 中點,可得是平行四邊形, ,從而可得平面,由中位線定理可得,從而得平面,根據(jù)面面平行的判定定理可得平面平面;(2)連接,可證明平面,從而得,根據(jù)可得, ,可得,進而可得結(jié)果.

試題解析:(1)時, 中點,因為的中點,

所以,則四邊形是平行四邊形,

所以.

平面平面,所以平面.

中點,所以

因為平面平面,所以平面.

因為平面平面,所以平面平面.

2)連接,

因為平面平面,所以.

平面,所以平面.

因為平面,所以.

在矩形中,由,得

所以, .

,所以, ,

,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中

(1)根據(jù)散點圖判斷: 哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應該印刷多少冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于正整數(shù)集合,),如果去掉其中任意一個元素)之后,剩余的所有元素組成的集合都能分為兩個交集為空集的集合,且這兩個集合的所有元素之和相等,就稱集合和諧集”.

(1)判斷集合是否為和諧集,并說明理由;

(2)求證:集合和諧集

(3)求證:若集合和諧集,則集合中元素個數(shù)為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖為某校數(shù)學專業(yè)N名畢業(yè)生的綜合測評成績(百分制)頻率分布直方圖,已知80-90分數(shù)段的學員數(shù)為21人。

(1)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90-95分數(shù)段內(nèi)的人數(shù);

(2)現(xiàn)欲將90-95分數(shù)段內(nèi)的n名人分配到幾所學校,從中安排2人到甲學校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為激發(fā)學生學習的興趣,老師上課時在黑板上寫出三個集合: ;然后叫甲、乙、丙三位同學到講臺上,并將中的數(shù)告訴了他們,要求他們各用一句話來描述,以便同學們能確定該數(shù),以下是甲、乙、丙三位同學的描述:

甲:此數(shù)為小于6的正整數(shù);乙:AB成立的充分不必要條件;

丙:AC成立的必要不充分條件

若老師評說這三位同學都說得對,則中的數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與的圖象關(guān)于對稱,且,函數(shù)的定義域為

(1)求的值;

(2)若函數(shù)上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(3)若函數(shù)的最大值為2,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的有(  )

①隨機事件A的概率是頻率的穩(wěn)定值,頻率是概率的近似值.

②一次試驗中不同的基本事件不可能同時發(fā)生.

③任意事件A發(fā)生的概率總滿足.

④若事件A的概率為0,則A是不可能事件.

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量, 獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計

10

55

合計

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨立的,求的平均值和方差.

附: ,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為,為圓心且與拋物線準線相切的圓恰好過原點.點軸的交點, 兩點在拋物線上且直線,點及的直線交拋物線于點.

1)求拋物線的方程;

2)求證:直線過一定點并求出該點坐標.

查看答案和解析>>

同步練習冊答案