【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求證:BC⊥AF;
(2)求幾何體EF-ABCD的體積.
【答案】(1)詳見解析;(2).
【解析】
(1)推導出FC⊥CD,FC⊥BC,AC⊥BC,由此BC⊥平面ACF,從而BC⊥AF.
(2)推導出AC=BC=2,AB4,從而AD=BCsin∠ABC=22,由V幾何體EF﹣ABCD=V幾何體A﹣CDEF+V幾何體F﹣ACB,能求出幾何體EF﹣ABCD的體積.
(1)因為平面CDEF⊥平面ABCD,
平面CDEF∩平面ABCD=CD,
又四邊形CDEF是正方形,
所以FC⊥CD,FC平面CDEF,
所以FC⊥平面ABCD,所以FC⊥BC.
因為△ACB是腰長為2的等腰直角三角形,
所以AC⊥BC.
又AC∩CF=C,所以BC⊥平面ACF.
所以BC⊥AF.
(2)因為△ABC是腰長為2的等腰直角三角形,
所以AC=BC=2,AB==4,
所以AD=BCsin∠ABC=2=2,
CD=AB=BCcos∠ABC=4-2cos45°=2,
∴DE=EF=CF=2,
由勾股定理得AE==2,
因為DE⊥平面ABCD,所以DE⊥AD.
又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF.
所以V幾何體EF-ABCD=V幾何體A-CDEF+V幾何體F-ACB
=
=+
=
=.
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(﹣1,1)上為減函數(shù)的是( 。
A.
B.y=cosx
C.y=ln(x+1)
D.y=2﹣x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x)=f(2-x),當x∈[0,1]時f(x)=x2,則函數(shù)g(x)=|sin(πx)|-f(x)在區(qū)間[-1,3]上的所有零點的和為( 。
A. 6 B. 7 C. 8 D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若在定義域內存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)有“漂移點”.
(1)用零點存在定理證明:函數(shù)f(x)=x2+2x在[0,1]上有“漂移點”;
(2)若函數(shù)g(x)=lg()在(0,+∞)上有“漂移點”,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l經過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.
(1)求直線l的方程.
(2)若點P(a,1)到直線l的距離為,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)若f(2)=a,求a的值;
(2)當a=2時,若對任意互不相等的實數(shù)x1,x2∈(m,m+4),都有>0成立,求實數(shù)m的取值范圍;
(3)判斷函數(shù)g(x)=f(x)-x-2a(<a<0)在R上的零點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線x2﹣ =1(b>0)的左、右焦點分別為F1 , F2 , 直線l過F2且與雙曲線交于A,B兩點.
(1)直線l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設b= ,若l的斜率存在,且( ) =0,求l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,已知曲線C1:(α為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρcos =-,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點M的直角坐標;
(2)設點A,B分別為曲線C2,C3上的動點,求|AB|的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com