如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=
1
2
AB.直角梯形ACEF中,EF
.
.
1
2
AC
,∠FAC是銳角,且平面ACEF⊥平面ABCD.
(Ⅰ)求證:BC⊥AF;
(Ⅱ)試判斷直線DF與平面BCE的位置關(guān)系,并證明你的結(jié)論.
考點(diǎn):直線與平面平行的判定,平面與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:(Ⅰ)取AB中點(diǎn)H,連結(jié)CH,先證明出四邊形AHCD為平行四邊形,推斷出AD=HC=
1
2
AB,證明出BC⊥AC,進(jìn)而根據(jù)線面垂直的判定定理推斷出BC⊥平面ACEF,最后根據(jù)線面垂直的性質(zhì)推斷出BC⊥AF. 
(Ⅱ)取AC的中點(diǎn)M,連接DM,F(xiàn)M,先證明出FM∥EC,根據(jù)面面平行的判定定理推斷出平面BCE∥平面DMF,進(jìn)而根據(jù)面面平行的性質(zhì)推斷出DF∥平面BCE.
解答: (Ⅰ)證明:取AB中點(diǎn)H,連結(jié)CH,
∵底面ABCD是梯形,且AD=DC=CB=
1
2
AB,
∴CD=AH,CD∥AH,
∴四邊形AHCD為平行四邊形,
∴AD=HC=
1
2
AB,
∴∠ACB=90°,
∴BC⊥AC,
∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,
∴BC⊥平面ACEF,
而AF?平面ACEF,
故BC⊥AF. 
(Ⅱ)DF∥平面BCE,以下證明:
取AC的中點(diǎn)M,連接DM,F(xiàn)M.
∵在平面ABCD中,DM⊥AC,BC⊥AC,
∴DM∥BC.           
∵在直角梯形ACEF中,EF
.
.
CM

∴FM∥EC.                                         
∵BC,CE?平面BCE,BC∩CE=C,DM,MF?平面DMF,DM∩MF=M,
∴平面BCE∥平面DMF,DF?平面DMF,
∴DF∥平面BCE.
點(diǎn)評(píng):本題主要考查了線面平行的判定定理和性質(zhì)以及線面垂直的判定定理及性質(zhì)的應(yīng)用.考查了學(xué)生綜合運(yùn)用立體幾何基礎(chǔ)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知以原點(diǎn)O為圓心的單位圓上有一質(zhì)點(diǎn)P,它從初始位置P0
1
2
,
3
2
)開始,按逆時(shí)針方向以角速度1rad/s做圓周運(yùn)動(dòng).則點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t的函數(shù)關(guān)系為( 。
A、y=sin(t+
π
3
),t≥0
B、y=sin(t+
π
6
),t≥0
C、y=cos(t+
π
3
),t≥0
D、y=cos(t+
π
6
),t≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4x+b,(a∈R,b∈R)
(1)若函數(shù)f(x)有最小值3,求f(1)+2a的最小值;
(2)若b=-4a,解關(guān)于x的不等式f(x)>-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos2θ-sin2θ=
1
2
,θ∈(0,
π
2
).
(1)求θ的值;
(2)若sinx=
3
5
,x∈(
π
2
,π),求cos(x+θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在平行四邊形ABCD中,∠A=90°,∠B=135°,∠C=60°,AB=AD,M,N分別是邊AB,CD上的點(diǎn),且2AM=MD,2CN=ND,如圖1,將△ABD沿對(duì)角線BD折疊,使得平面ABD⊥平面BCD,并連結(jié)AC,MN(如圖2).

(1)證明:MN∥平面ABC;
(2)證明:AD⊥BC;
(3)若BC=1,求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從全校參加期末考試的試卷中,抽取一個(gè)樣本,考察成績(均為整數(shù))的分布,將樣本分成5組,繪成頻率分布直方圖,如圖所示.圖中從左到右各小組的小矩形的高之比為2:3:6:4:1,最右邊的一組頻數(shù)是5.
(1)求樣本容量;
(2)求樣本90.5~105.5這一組的頻數(shù)及頻率;
(3)如果成績大于120分為優(yōu)秀,估計(jì)這次考試成績的優(yōu)秀率(用百分?jǐn)?shù)表示,精確到1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+ax(a∈R)有兩個(gè)不同的零點(diǎn)x1、x2
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)x0=
x1+x2
2
,f′(x)為f(x)的導(dǎo)函數(shù),證明f′(x0)<0;
(Ⅲ)證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為雙曲線的左、右焦點(diǎn),點(diǎn)P為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右支上的一點(diǎn),滿足
PF1
PF2
=0,且|PF1|=
3
|PF2|,則該雙曲線離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,若函數(shù)f(x)=
1+a•2x
1+b•2x
(x∈R)是奇函數(shù),則a+b=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案