精英家教網 > 高中數學 > 題目詳情

【題目】某幾何體的三視圖如圖所示,當xy取得最大值時,該幾何體的體積是________

【答案】3

【解析】由題意可知,該幾何體為如圖所示的四棱錐PABCDCD,AByAC=5,CP,BPx,

BP2BC2CP2,

x2=25-y2+7,x2y2=32≥2xy,

xy≤16,當且僅當xy=4時,等號成立.

此時該幾何體的體積V3

點睛:空間幾何體體積問題的常見類型及解題策略

(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.

(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解.

(3)若以三視圖的形式給出幾何體,則應先根據三視圖得到幾何體的直觀圖,然后根據條件求解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)設

若函數處的切線過點,求的值;

時,若函數上沒有零點,求的取值范圍.

2)設函數,且,求證: 時,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項等比數列{an}(nN*),首項a13,前n項和為Sn,且S3a3、S5a5S4a4成等差數列.

1)求數列{an}的通項公式;

2)數列{nan}的前n項和為Tn,若對任意正整數n,都有Tn[a,b],求ba的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如下.根據壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)

頻數

頻率

合計

Ⅰ)根據頻率分布表中的數據,寫出, 的值.

Ⅱ)某人從燈泡樣品中隨機地購買了個,求個燈泡中恰有一個是優(yōu)等品的概率.

Ⅲ)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·成都一診)已知橢圓的右焦點為F,設直線lx=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于AB兩點,M為線段EF的中點.

(1)若直線l1的傾斜角為,求△ABM的面積S的值;

(2)過點B作直線BNl于點N,證明:AM,N三點共線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·安徽名校階段性測試)如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點,AE=3,圓O的直徑CE=9.

(1)求證:平面ABE⊥平面ADE

(2)求五面體ABCDE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

,,的單調遞減區(qū)間;

若函數有唯一的零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長為2的菱形,∠ABC60°為正三角形,且側面PAB底面ABCD, 為線段的中點, 在線段.

I是線段的中點時求證:PB // 平面ACM;

II求證: ;

III)是否存在點,使二面角的大小為60°,若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的圖象在點處的切線方程;

(2)求函數的單調區(qū)間;

(3)若,且方程有兩個不相等的實數根,求證: .

查看答案和解析>>

同步練習冊答案