在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若A=60°,a=3,b=
6
,則B=
 
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:直接利用正弦定理求出B,通過(guò)三角形的邊長(zhǎng)與角的關(guān)系判斷B得到結(jié)果.
解答: 解:∵
a
sinA
=
b
sinB
⇒sinB=
2
2
⇒B=45°或135°,
A=60°,a=3,b=
6
,
∴B=45°.(大角對(duì)大邊,小角對(duì)小邊).
故答案為:45°
點(diǎn)評(píng):本題考查正弦定理的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,曲線(xiàn)y=f(x)在點(diǎn)x=1處的切線(xiàn)為l:3x-y=0,若x=
2
3
時(shí),y=f(x)有極值.
(1)求y=f(x)的解析式;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a2+a12=32,則a3+a11的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}是等差數(shù)列,首項(xiàng)a1>0,a2003+a2004>0,a2003•a2004<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比q=
1
2
,前n項(xiàng)和為Sn,則
S4
a2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,若M,N分別是BB1,CC1的中點(diǎn),則異面直線(xiàn)AM與A1N所成的角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,給出以下結(jié)論:
①DB1⊥平面ACD1
②AD1∥平面BCC1;
③AD⊥平面D1DB;
④平面ACD1⊥平面B1D1D;
⑤AB與DB1所成的角為45°.
其中所有正確結(jié)論的序號(hào)為
 
(請(qǐng)把正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+
π
3
)(?>0)的最小正周期是π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
12+22=
2×(2+1)×(2×2+1)
6
;
12+22+32=
3×(3+1)×(2×3+1)
6

12+22+32+42=
4×(4+1)×(2×4+1)
6
;

根據(jù)上述規(guī)律可得
12+22+32+…+n2=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案