數(shù)列{bn}前n項(xiàng)和為Sn且b1=1,bn+1Sn

(1)求b2,b3,b4的值;

(2)求{bn}的通項(xiàng)公式;

(3)求b2+b4+b6+……+b2n值.

答案:
解析:

  解:(1)    3分

  (2)

 、伲诮 

    ()

    7分

  (3),,……是首項(xiàng)為,公比的等比數(shù)列.

    12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象點(diǎn)的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
,an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn為數(shù)列{an}前n項(xiàng)和,當(dāng)Tn<m(Sn+1+1)對(duì)一切n∈N*都成立時(shí),試求實(shí)數(shù)m的取值范圍.
(3)在(2)的條件下,設(shè)bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn為數(shù)列{bn}前n項(xiàng)和,證明:Bn
17
52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}前n項(xiàng)和記為Sn,且an>0,Sn=
1
8
(an+2)2(n∈N*)

(1)求數(shù)列{an}通項(xiàng)公式an
(2)若bn滿足bn=(t-1)
an+2
4
(t>1)
,Tn為數(shù)列{bn}前n項(xiàng)和,求:Tn
(3)在(2)的條件下求
lim
n→∞
Tn
Tn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=
1
4
,an+1=Sn+
t
16
(n∈N*,t為常數(shù)).
(Ⅰ)若數(shù)列{an}為等比數(shù)列,求t的值;
(Ⅱ)若t>-4,bn=lgan+1,數(shù)列{bn}前n項(xiàng)和為Tn,當(dāng)且僅當(dāng)n=6時(shí)Tn取最小值,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知a2=2,a5=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)在等差數(shù)列{bn}中,若b1=a5,b8=a2,求數(shù)列{bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=1,a1+a2+a3=6.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 令bn=an2n.求數(shù)列{bn}前n項(xiàng)和的公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案