3.己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時(shí),f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f($\frac{1}{2}$)的實(shí)數(shù)x為 (  )
A.$\frac{17}{2}$B.$\frac{67}{8}$C.$\frac{33}{4}$D.$\frac{65}{8}$

分析 由f(x+1)為奇函數(shù),可得f(x)=-f(2-x).由f(x)為偶函數(shù)可得f(x)=f(x+4),故 f(x)是以4為周期的函數(shù).當(dāng)8<x≤9時(shí),求得f(x)=f(x-8)=log2(x-8).由log2(x-8)+2=-1得x的值.

解答 解:∵f(x+1)為奇函數(shù),即f(x+1)=-f(-x+1),即f(x)=-f(2-x).
當(dāng)x∈(1,2)時(shí),2-x∈(0,1),∴f(x)=-f(2-x)=-log2(2-x).
又f(x)為偶函數(shù),即f(x)=f(-x),于是f(-x)=-f(-x+2),
即f(x)=-f(x+2)=f(x+4),故 f(x)是以4為周期的函數(shù).
∵f(1)=0,∴當(dāng)8<x≤9時(shí),0<x-8≤1,f(x)=f(x-8)=log2(x-8).
由f($\frac{1}{2}$)=-1,f(x)+2=f($\frac{1}{2}$)可化為log2(x-8)+2=-1,得x=$\frac{65}{8}$.
故選:D.

點(diǎn)評 本題主要考查方程的根的存在性及個(gè)數(shù)判斷,函數(shù)的奇偶性與周期性的應(yīng)用,抽象函數(shù)的應(yīng)用,體現(xiàn)了化歸與轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.比大。
(1)log67>log76;(2)log31.5<log20.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=4x+1,x∈{0,1,2,3,4},這個(gè)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(1)比較下列各組數(shù)的大小
①($\frac{1}{2}$)-1.8,(2$\sqrt{2}$)0.6;②4222,3333;③0.8-2,($\frac{4}{3}$)${\;}^{-\frac{1}{3}}$;④($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,($\frac{1}{3}$)${\;}^{\frac{1}{2}}$
(2)下面判斷正確的是②
①($\frac{7}{8}$)1.2>($\frac{8}{7}$)0.6
②(3$\sqrt{3}$)1.5>($\frac{1}{3}$)-2>16${\;}^{\frac{1}{2}}$
③($\frac{3}{4}$)${\;}^{\frac{1}{2}}$>($\frac{1}{2}$)${\;}^{\frac{3}{4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=($\frac{1}{2}$)${\;}^{\sqrt{1-|x|}}$的單調(diào)遞增區(qū)間是( 。
A.[-1,0]B.(-∞,-1]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.計(jì)算${7}^{lo{g}_{7}5•lo{g}_{5}5•lo{g}_{5}4}$的值為(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計(jì)算:[(5$\frac{4}{9}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$÷(0.2)-1]÷0.06250.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=${log}_{\frac{1}{3}}$(ax2-x+2)在區(qū)間[0,1]上單調(diào)遞增,則實(shí)數(shù)a的范圍為(-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=4,|$\overrightarrow$|=8且$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,則|2$\overrightarrow{a}$-$\overrightarrow$|=$8\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案