20.已知物體的運(yùn)動(dòng)方程為s=$\frac{1}{4}{t^4}-4{t^3}+16{t^2}$(t表示時(shí)間,單位:秒;s表示位移,單位:米),則瞬時(shí)速度為0米每秒的時(shí)刻是( 。
A.0秒、2秒或4秒B.0秒、2秒或16秒C.0秒、4秒或8秒D.2秒、8秒或16秒

分析 對物體的運(yùn)動(dòng)方程求導(dǎo)為瞬時(shí)速度,令其為0得瞬時(shí)速度為0米每秒的時(shí)刻.

解答 解:s′=t3-12t2+32t
令s′=t3-12t2+32t=0得
t=0或 t=4或t=8
故選:C.

點(diǎn)評 考查導(dǎo)數(shù)在物理中的應(yīng)用:位移求導(dǎo)為瞬時(shí)速度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x3+ax與g(x)=bx2+cx圖象都過點(diǎn)P(2,0)且在點(diǎn)P處有公切線,求
(1)f(x)和g(x)的表達(dá)式及公切線方程;
(2)若$F(x)=f'(1)lnx+\frac{g(x)}{16}$,求F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.探究函數(shù)$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并確定取得最小值時(shí)x的值.列表如下:
x0.511.51.71.922.12.22.33457
y16108.348.18.0188.018.048.088.61011.615.14
請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
(1)函數(shù)$f(x)=2x+\frac{8}{x}(x>0)$在區(qū)間(0,2)上遞減;函數(shù)$f(x)=2x+\frac{8}{x}(x>0)$在區(qū)間(2,+∞)上遞增.當(dāng)x=2時(shí),y最小=8.
(2)證明:函數(shù)$f(x)=2x+\frac{8}{x}(x>0)$在區(qū)間(0,2)遞減.
(3)思考:函數(shù)y=2x+$\frac{8}{x}$時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,該幾何體的體積為$\frac{9+\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.日晷,是中國古代利用日影測得時(shí)刻的一種計(jì)時(shí)工具,又稱“日規(guī)”.其原理就是利用太陽的投影方向來測定并劃分時(shí)刻.利用日晷計(jì)時(shí)的方法是人類在天文計(jì)時(shí)領(lǐng)域的重大發(fā)明,這項(xiàng)發(fā)明被人類沿用達(dá)幾千年之久.如圖是故宮中的一個(gè)日晷,則根據(jù)圖片判斷此日晷的側(cè)(左)視圖可能為  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在長方體ABCD-A1B1C1D1任意取點(diǎn),則該點(diǎn)落在四棱錐B1-ABCD內(nèi)部的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x3+sin2x=m,y3+sin2y=-m,且$x,y∈({-\frac{π}{4},\frac{π}{4}})$,m∈R,則$tan({x+y+\frac{π}{3}})$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD所成的角大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\frac{m}{1-i}=1+ni$,其中m、n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=( 。
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

同步練習(xí)冊答案