(文)在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N*),且a1,a2,a5成公比不等于1的等比數(shù)列.

(Ⅰ)求c的值;

(Ⅱ)設(shè),求數(shù)列{bn}的前n項(xiàng)和Sn

答案:
解析:

  (文)解:(Ⅰ)∵為常數(shù),∴. 2分

  ∴

  又成等比數(shù)列,∴,解得. 4分

  當(dāng)時(shí),不合題意,舍去.∴. 6分

  (Ⅱ)由(Ⅰ)知,. 8分

  ∴ 10分

  ∴

   12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,如果對(duì)任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號(hào)是
①④
①④

①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
(文)④數(shù)列{an}滿足:an+1=an2+2an,a1=2,則此數(shù)列的通項(xiàng)為an=32n-1-1,且{an}不是比等差數(shù)列;
(理)④數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*)
,則此數(shù)列的通項(xiàng)為an=
n•3n
3n-1
,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年萊陽(yáng)一中學(xué)段檢測(cè)文)(12分)

已知在數(shù)列{an}中,已知,且

(1)求a2 ,a3

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)設(shè),求和:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都外國(guó)語(yǔ)學(xué)校高三(上)11月月考數(shù)學(xué)試卷(解析版) 題型:填空題

在數(shù)列{an}中,如果對(duì)任意的n∈N*,都有(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號(hào)是   
①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
(文)④數(shù)列{an}滿足:,a1=2,則此數(shù)列的通項(xiàng)為-1,且{an}不是比等差數(shù)列;
(理)④數(shù)列{an}滿足:a1=,且an=,則此數(shù)列的通項(xiàng)為an=,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都外國(guó)語(yǔ)學(xué)校高三(上)11月月考數(shù)學(xué)試卷(解析版) 題型:填空題

在數(shù)列{an}中,如果對(duì)任意的n∈N*,都有(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號(hào)是   
①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
(文)④數(shù)列{an}滿足:,a1=2,則此數(shù)列的通項(xiàng)為-1,且{an}不是比等差數(shù)列;
(理)④數(shù)列{an}滿足:a1=,且an=,則此數(shù)列的通項(xiàng)為an=,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年宜昌一中12月月考文)在數(shù)列{an}中,,則數(shù)列的前100項(xiàng)和等于               

查看答案和解析>>

同步練習(xí)冊(cè)答案