18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}+1,x≤0}\\{lo{g}_{3}x+ax,x>0}\end{array}\right.$,若f(f(-1))>4a,則實(shí)數(shù)a的取值范圍為a<1.

分析 根據(jù)分段函數(shù)的表達(dá)式可求出f(f(-1))=f(3)=1+3a,解不等式即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{-x}+1,x≤0}\\{lo{g}_{3}x+ax,x>0}\end{array}\right.$,
∴f(-1)=3,
∵f(f(-1))=f(3)=1+3a>4a,
∴a<1,
故答案為a<1.

點(diǎn)評(píng) 考查了根據(jù)分段函數(shù)的表達(dá)式求值.屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,B=60°,b=2$\sqrt{6}$,a=4,則C=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,焦距為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸于點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn),過(guò)點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長(zhǎng)QM交C于點(diǎn)B.
(。┰O(shè)直線PM,QM的斜率分別為k,k′,證明$\frac{k′}{k}$為定值;
(ⅱ)求直線AB的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)求f(x)在[0,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.直線l經(jīng)過(guò)三點(diǎn)A(a,2)、B(2,a)、C(1,1),則直線l的方程為x+y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知某縣嬰幼兒的身高y(cm)與年齡x(歲)的一組調(diào)查數(shù)據(jù)如下:
年齡x0.31.21.71.92.22.63.13.23.84.0
身高y637176798387919397100
求y關(guān)于x的一元線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)x>0,y∈R,則“x>y”是“x>|y|”的 ( 。
A.充要條件B.充分不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.化簡(jiǎn):$\frac{1-tan9°}{sin9°(1-2si{n}^{2}9°)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知α,β∈(-$\frac{π}{4}$,0),且3sinβ=sin(2α+β),4$\sqrt{3}$tan$\frac{α}{2}$=tan2$\frac{α}{2}$-1,求α+β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案