【題目】已知函數(shù)的圖象上所有點向左平移個單位,然后縱坐標不變,橫坐標縮短為原來的,得到函數(shù)的圖象.若為偶函數(shù),且最小正周期為,則(

A.圖象與對稱B.單調(diào)遞增

C.有且僅有3個解D.有僅有3個極大值點

【答案】AC

【解析】

根據(jù)三角函數(shù)的圖象變換和三角函數(shù)的性質(zhì),求得函數(shù)的解析式,再結(jié)合三角函數(shù)的圖象與性質(zhì),逐項判定,即可求解.

將函數(shù)的圖象上所有點向左平移個單位,

可得,

再橫坐標縮短為原來的,可得,

因為函數(shù)的最小正周期為,即,解得,

可得

又由函數(shù)為偶函數(shù),則,

,當,可得,

所以,

,即

時,,即函數(shù)的圖象關(guān)于對稱,

所以A是正確的;

時,,

所以函數(shù)在區(qū)間不是單調(diào)函數(shù),

所以B不正確;

,

因為,可得,

,

,

所以有且僅有3個解,所以C正確;

,則,

時,取得極大值,

所以有僅有2個極大值點,所以D不正確.

故選:AC.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,為其焦點,為其準線,過任作一條直線交拋物線于兩點,、分別為上的射影,的中點,給出下列命題:

1;(2;(3;

4的交點的軸上;(5交于原點.

其中真命題的序號為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,為等邊三角形,是棱上一點.

1)證明:;

2)若平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱ABCD-A1B1C1D1中,ABCDAB1BC,且AA1AB.求證:

1AB平面D1DCC1;

2AB1⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,已知,的平分線,且棱錐的三個側(cè)面與底面都成角,求棱錐的側(cè)面積與體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直三棱柱,,,分別為,的中點,且

1)求證:平面

2)求;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四棱柱中,,的中點.

1)求證:平面;

2)求證:平面;

3)若上的動點,使直線與平面所成角的正弦值是,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,則下面結(jié)論正確的是(

A.上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

B.上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

C.向左平移個單位長度,再把得到的曲線上各點的橫坐標變?yōu)樵瓉淼?/span>倍.縱坐標不變,得到曲線

D.向左平移個單位長度,再把得到的曲線上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求的最大值;

2)當時,討論極值點的個數(shù).

查看答案和解析>>

同步練習冊答案