已知t0時(shí)刻一質(zhì)點(diǎn)在數(shù)軸的原點(diǎn),該質(zhì)點(diǎn)每經(jīng)過(guò)1秒就要向右跳動(dòng)一個(gè)單位長(zhǎng)度,已知每次跳動(dòng),該質(zhì)點(diǎn)向左的概率為,向右的概率為

(1)t3秒時(shí)刻,該質(zhì)點(diǎn)在數(shù)軸上x1處的概率.

(2)設(shè)t3秒時(shí)刻,該質(zhì)點(diǎn)在數(shù)軸上x=ξ處,求Eξ、Dξ.

答案:
解析:

  (1)由題意,質(zhì)點(diǎn)右跳二次,左跳一次.

  ∴概率

  (2)設(shè)秒時(shí)刻,質(zhì)量已向右跳了次,則

   

  又  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省牡丹江一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:022

下列命題中正確的有________.(填上所有正確命題的序號(hào))

①若(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;

②若,則f(x)>0在[a,b]上恒成立;

③已知函數(shù),則的值為;

④一質(zhì)點(diǎn)在直線上以速度v=t2-4t+3(m/s)運(yùn)動(dòng),從時(shí)刻t=0(s)到t=4(s)時(shí)質(zhì)點(diǎn)運(yùn)動(dòng)的位移為(m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省吳江市震澤中學(xué)2007-2008學(xué)年第一學(xué)期高三期中測(cè)試(數(shù)學(xué)) 題型:044

定義在D上的函數(shù)f(x),如果滿足:,常數(shù)M>0,都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)的上界.

(Ⅰ)試判斷函數(shù)在[1,3]上是不是有界函數(shù)?請(qǐng)給出證明;

(Ⅱ)若已知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,要使在t∈[0,+∞]上的每一時(shí)刻的瞬時(shí)速度是以M=1為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省安福中學(xué)2011屆高三上學(xué)期第一次月考理科數(shù)學(xué)試題 題型:044

如下圖所示,定義在D上的函數(shù)f(x),如果滿足:對(duì)x∈D,常數(shù)A,都有f(x)≥A成立,則稱(chēng)函數(shù)f(x)在D上有下界,其中A稱(chēng)為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)

(1)試判斷函數(shù)f(x)=x3在(0,+∞)上是否有下界?并說(shuō)明理由;

(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 概率與統(tǒng)計(jì)(1) 題型:044

已知t=0時(shí)刻一質(zhì)點(diǎn)在數(shù)軸的原點(diǎn),該質(zhì)點(diǎn)每經(jīng)過(guò)1秒就要向右跳動(dòng)一個(gè)單位長(zhǎng)度,已知每次跳動(dòng),該質(zhì)點(diǎn)向左的概率為,向右的概率為

(1)求t=3秒時(shí)刻,該質(zhì)點(diǎn)在數(shù)軸上x(chóng)=1處的概率.

(2)設(shè)t=3秒時(shí)刻,該質(zhì)點(diǎn)在數(shù)軸上x(chóng)=ξ處,求Eξ、Dξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案