方程sinx=lgx在x∈[0,2π]上根的個(gè)數(shù)為
 
考點(diǎn):正弦函數(shù)的圖象,對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:方程sinx=lgx在x∈[0,2π]上根的個(gè)數(shù)為函數(shù)y=sinx的圖象和 y=lgx的圖象交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合可得函數(shù)y=sinx的圖象和 y=lgx的圖象交點(diǎn)個(gè)數(shù).
解答: 解:程sinx=lgx在x∈[0,2π]上根的個(gè)數(shù)為函數(shù)y=sinx的圖象和 y=lgx的圖象交點(diǎn)個(gè)數(shù),
數(shù)形結(jié)合可得函數(shù)y=sinx的圖象和 y=lgx的圖象交點(diǎn)個(gè)數(shù)為1,
故答案為:1.
點(diǎn)評(píng):本題主要考查方程根的存在性及個(gè)數(shù)判斷,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的平面四邊形ABCD中,△ABD是以A為直角頂點(diǎn)的等腰直角三角形,△BCD為正三角形,且BD=4,AC與BD交于點(diǎn)O(如圖甲).現(xiàn)沿BD將平面四邊形ABCD折成三棱錐A-BCD,使得折起后∠AOC=θ(0<θ<π)(如圖乙).
(Ⅰ)證明:不論θ在(0,π)內(nèi)為何值,均有AC⊥BD;
(Ⅱ)當(dāng)三棱錐A-BCD的體積為
8
3
3
時(shí),求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C:
x2
2
-y2=1的左、右頂點(diǎn)分別為A1、A2,垂直子x軸的直線m與雙曲線C交于不同的兩點(diǎn)P、Q.
(Ⅰ)求直線A1P與直線A2Q的交點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)T(2,0).過(guò)點(diǎn)F(1,0)作直線l與(Ⅰ)中的軌跡E交于不同的兩點(diǎn)名A、B,設(shè)
FA
FB
,若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-lg(x-2)
的定義域?yàn)?div id="7dlkifw" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓中兩條弦AB與CD相交與F,且DF=CF=
2
,E是AB延長(zhǎng)線上一點(diǎn),AF:FB:BE=4:2:1,若CE與圓相切,則線段CE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記數(shù)列{an}的前n項(xiàng)和為Sn,若不等式an2+
Sn2
n2
≥ma12對(duì)任意等差數(shù)列{an}及任意正整數(shù)n都成立,則實(shí)數(shù)m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l線的方程為:(2m+1)x+(m+1)y-7m-4=0(m∈R),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ2-20=2ρcosθ+4ρsinθ,則直線l被圓C截得的線段的最短長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的“廣義距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)Z均成立;
現(xiàn)在給出四個(gè)二元函數(shù):
①f(x,y)=x2+y2;
②f(x,y)=(x-y)2
③f(x,y)=
x2+y2-xy

④f(x,y)=sin(x-y);
能夠稱為關(guān)于x、y的“廣義距離”的函數(shù)的所有序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
2
sin(
π
4
x-φ)(0<φ<π)的部分圖象如圖所示,則(
OA
+
OB
)•
AB
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案