【題目】已知橢圓G: 的兩個焦點分別為F1和F2 , 短軸的兩個端點分別為B1和B2 , 點P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|.當b變化時,給出下列三個命題: ①點P的軌跡關(guān)于y軸對稱;
②存在b使得橢圓G上滿足條件的點P僅有兩個;
③|OP|的最小值為2,
其中,所有正確命題的序號是 .
【答案】①③
【解析】解:橢圓G: 的兩個焦點分別為
F1( ,0)和F2(﹣ ,0),
短軸的兩個端點分別為B1(0,﹣b)和B2(0,b),
設(shè)P(x,y),點P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|,
由橢圓定義可得,|PB1|+|PB2|=2a=2 >2b,
即有P在橢圓 + =1上.
對于①,將x換為﹣x方程不變,則點P的軌跡關(guān)于y軸對稱,
故①正確;
對于②,由圖象可得軌跡關(guān)于x,y軸對稱,且0<b< ,
則橢圓G上滿足條件的點P有4個,
不存在b使得橢圓G上滿足條件的點P僅有兩個,故②不正確;
對于③,由圖象可得,當P滿足x2=y2,即有6﹣b2=b2,即b= 時,
|OP|取得最小值,可得x2=y2=2,即有|OP|的最小值為2,故③正確.
所以答案是:①③.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,某物流公司每天的業(yè)務中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購置貨車專門運營從甲地到乙地的貨物,一輛貨車每天只能運營一趟,每輛車每 趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項業(yè)務的營業(yè)利潤最大,該物流公司應該購置幾輛貨
車?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,AC與BD交于點O,E是線段OD的中點,AE的延長線與CD相交于點F.若AB=2, ,∠BAD=45°,則 =( )
A.
B.1
C.﹣
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x3+ax2+x在R上是增函數(shù);命題q:若函數(shù)g(x)=ex﹣x+a在區(qū)間[0,+∞)沒有零點.
(1)如果命題p為真命題,求實數(shù)a的取值范圍;
(2)命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將集合M={1,2,3,…15}表示為它的5個三元子集(三元集:含三個元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個三元集的元素之和為;請寫出滿足上述條件的集合M的5個三元子集 . (只寫出一組)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于無窮數(shù)列{an},記T={x|x=aj﹣ai , i<j},若數(shù)列{an}滿足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,則稱數(shù)列{an}具有性質(zhì)P(t). (Ⅰ)若數(shù)列{an}滿足 判斷數(shù)列{an}是否具有性質(zhì)P(2)?是否具有性質(zhì)P(4)?
(Ⅱ)求證:“T是有限集”是“數(shù)列{an}具有性質(zhì)P(0)”的必要不充分條件;
(Ⅲ)已知{an}是各項為正整數(shù)的數(shù)列,且{an}既具有性質(zhì)P(2),又具有性質(zhì)P(5),求證:存在整數(shù)N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為研究學生語言學科的學習情況,現(xiàn)對高二200名學生英語和語文某次考試成績進行抽樣分析.將200名學生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學生,將10名學生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學生編號是006,寫出第五段抽取的學生編號;
(Ⅱ)在這兩科成績差超過20分的學生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學生的語文和英語兩科成績,寫出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.
(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點,EF⊥平面PCD,求直線PB與平面PCD所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com