分析 (1)由已知求出AC,BC的長(zhǎng),利用勾股定理可得AC⊥BC,再由面面垂直的性質(zhì)可得BC⊥平面ACD;
(2)由(1)知BC⊥平面ACD,然后利用等積法即可求得幾何體D-ABC的體積.
解答 證明:(1)由圖(1)可知,$AC=BC=2\sqrt{2}$,AB=4,
∴AC2+BC2=AB2,則AC⊥BC,
又∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC?平面ABC,
∴BC⊥平面ACD;
解:(2)由(1)可知,BC⊥平面ACD,則BC即為幾何體B-ACD的高,
∴${V_{D-ABC}}={V_{B-ACD}}=\frac{1}{3}{S_{△ACD}}•BC=\frac{1}{3}×(\frac{1}{2}×2×2)×2\sqrt{2}=\frac{4}{3}\sqrt{2}$.
點(diǎn)評(píng) 本題考查直線與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 不充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2016}{2017}$ | B. | $\frac{4032}{2017}$ | C. | $\frac{2017}{2018}$ | D. | $\frac{4034}{2018}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x2=9,則x=±3”的否命題為“若x2=9,則x≠±3” | |
B. | 若命題P:?x0∈R,$x_0^2-3{x_0}-1>0$,則命題?P:?x∈R,$x_{\;}^2-3x-1<0$ | |
C. | 設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,則“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夾角為鈍角”的必要不充分條件 | |
D. | 若命題P:$\frac{1}{x-2}>0$,則¬P:$\frac{1}{x-2}≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [10,+∞) | B. | [$\frac{29}{2}$,+∞) | C. | [$\frac{25}{2}$,+∞) | D. | [$\frac{41}{4}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com