精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω<0,|φ|<
π2
)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)g(x)=f(x)-2cos2x時(shí),如何由函數(shù)y=sinx的圖象通過(guò)適當(dāng)?shù)淖儞Q得到函數(shù)y=g(x)的圖象,寫(xiě)出變換過(guò)程.
分析:(Ⅰ)欲求函數(shù)f(x)的解析式,需找到A,ω,φ的值,A是振幅,是圖象離開(kāi)平衡位置的最大位移,由圖象可知;ω與函數(shù)周期有關(guān),周期T=
ω
,根據(jù)圖象找到周期,可得ω的值,再代一點(diǎn),就可求出∅值.
(Ⅱ)先求出g(x)的解析式,把y=sinx的圖象向右平移
π
6
得到y(tǒng)=sin(x-
π
6
)的圖象;再把sin(x-
π
6
)圖象上所有點(diǎn)的坐標(biāo)縮短為原來(lái)的
1
2
縱坐標(biāo)不變得到y(tǒng)=sin(2x-
π
6
)的圖象;把y=sin(2x-
π
6
)的圖象上所有點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的
1
2
,縱坐標(biāo)不變得到y(tǒng)=2sin(2x-
π
6
)的圖象.
解答:解:(Ⅰ)由圖象知A=2,f(x)的最小正周期T=4×(
12
-
π
6
)=π,∴ω=2
將點(diǎn)(
π
6
,2)代入得sin(
π
3
+φ)=1,又,|φ|<
π
2
,∴φ=
π
6

故函數(shù)f(x)的解析式為f(x)=2sin(2x+
π
6

(Ⅱ)g(x)=2sin(2x+
π
6
)-2cos2x=
3
sin2x-cos2x=2sin(2x-
π
6

變換如下:把y=sinx的圖象向右平移
π
6
得到y(tǒng)=sin(x-
π
6
)的圖象;再把sin(x-
π
6

圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
縱坐標(biāo)不變得到y(tǒng)=sin(2x-
π
6
)的圖象;
把y=sin(2x-
π
6
)的圖象上所有點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的2倍,橫坐標(biāo)不變得到y(tǒng)=2sin(2x-
π
6
)的圖象.
點(diǎn)評(píng):本題考查了由三角函數(shù)圖象求解析式,以及函數(shù)圖象變換,做題時(shí)要細(xì)心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案