8.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$無最大值,則實(shí)數(shù)a的取值范圍是(  )
A.(-1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,-1)

分析 求出函數(shù)f(x)的導(dǎo)數(shù),可得極值點(diǎn),討論a=-1,a<-1,a>-1,結(jié)合單調(diào)性和f(x)無最大值,可得a的不等式組,解不等式可得a的范圍.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$的導(dǎo)數(shù)為
f′(x)=$\left\{\begin{array}{l}{3{x}^{2}-3,x≤a}\\{-2,x>a}\end{array}\right.$,
令f′(x)=0,則x=±1,
當(dāng)a=-1時(shí),可得f(x)在(-∞,-1]遞增,
可得f(x)在x=-1處取得最大值2,與題意不符,舍去;
則$\left\{\begin{array}{l}{a<-1}\\{-2a>{a}^{3}-3a}\end{array}\right.$,或 $\left\{\begin{array}{l}{a>-1}\\{-2a>{a}^{3}-3a}\\{-2a>2}\end{array}\right.$,
即為$\left\{\begin{array}{l}{a<-1}\\{a<0}\end{array}\right.$或$\left\{\begin{array}{l}{a>-1}\\{a<0}\\{a<-1}\end{array}\right.$,即為a<-1或a∈∅.
綜上可得a∈(-∞,-1).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,以及運(yùn)用分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式組$\left\{\begin{array}{l}-2{x^2}+x+1<0\\(x-1)(x-2)(x-3)>0\end{array}\right.$的解集是( 。
A.(-∞,$\frac{1}{2}$)∪(1,2)B.(1,2)∪(3,+∞)C.(-∞,$\frac{1}{2}$)∪(1,+∞)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若有放回地從1,2,5,7中任取兩數(shù),則這兩數(shù)的和為奇數(shù)的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,求7a7+5a5+3a3+a1=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)定義在區(qū)間(-b,b)上的非常函數(shù)f(x)=lg$\frac{1+ax}{1-2x}$是奇函數(shù),則ab的范圍是(  )
A.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.(1,$\sqrt{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a,b,c是正整數(shù),且a∈[70,80),b∈[80,90),c∈[90,100],當(dāng)數(shù)據(jù)a,b,c的方差最小時(shí),a+b+c的值為(  )
A.252或253B.253或254C.254或255D.267或268

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.統(tǒng)計(jì)某小區(qū)100戶人家1月份用水量,制成條形統(tǒng)計(jì)圖如圖,則1月份用水量的平均數(shù)為6.16t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex,g(x)=lnx-a(x-1),其中a>0,經(jīng)過坐標(biāo)原點(diǎn)分別作曲線y=f(x)和y=g(x)的切線l1,l2,兩條切線的斜率依次為k1,k2
(1)求k1的值;
(2)如果k1•k2=1,證明:1-$\frac{1}{e}$<a<e-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列命題中正確的序號(hào)是①②③⑤
①已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.9,則P(ξ>2)=0.05;
②某學(xué)生在最近的15次數(shù)學(xué)測(cè)驗(yàn)中有5次不及格.按照這個(gè)成績(jī),他在接下來的6次測(cè)驗(yàn)中,恰好前4次及格的概率為($\frac{2}{3}$)4($\frac{1}{3}$)2;
③設(shè)a,b∈R,“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要不充分條件;
④某個(gè)命題與正整數(shù)有關(guān),若當(dāng)n=k(k∈N*)時(shí)該命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立,現(xiàn)已知當(dāng)n=5時(shí)該命題不成立,那么可推得當(dāng)n=6時(shí),該命題不成立;
⑤曲線y=x2-1與直線x=2,y=0所圍成的區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案