16.已知△ABC,根據(jù)下列條件,求三角形中其他邊和角的大小.
(1)A=60°,B=45°,a=10;
(2)a=3,b=4,A=30°.

分析 (1)利用正弦定理和已知條件求三角形中其他邊和角的大小.
(2)求出B,分類討論,即可得出結(jié)論.

解答 解:(1)A=60°,B=45°,C=75°,
由正弦定理得b=$\frac{asinB}{sinA}$=5$\sqrt{6}$,c=$\frac{asinC}{sinA}$=$\frac{15\sqrt{2}+5\sqrt{6}}{3}$;
(2)∵在△ABC中,a=3,b=4,∠A=30°,
由正弦定理得sinB=$\frac{2}{3}$,∴B=arcsin$\frac{2}{3}$.
B為銳角,cosB=$\frac{\sqrt{5}}{3}$,sinC=sin(150°-B)=$\frac{\sqrt{5}+2\sqrt{3}}{6}$,C=arcsin$\frac{\sqrt{5}+2\sqrt{3}}{6}$,
∴c=$\frac{asinC}{sinA}$=$\sqrt{5}$+2$\sqrt{3}$;
B為鈍角,cosB=-$\frac{\sqrt{5}}{3}$,sinC=sin(150°-B)=$\frac{2\sqrt{3}-\sqrt{5}}{6}$,C=arcsin$\frac{2\sqrt{3}-\sqrt{5}}{6}$,
∴c=$\frac{asinC}{sinA}$=-$\sqrt{5}$+2$\sqrt{3}$.

點(diǎn)評 本題主要考查了正弦定理的應(yīng)用.在三角形知三求一的問題上可考慮采用正弦定理來解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)$y={log_2}(2sinx-1)+\sqrt{1-2cosx}$的定義域?yàn)閇2kπ+$\frac{π}{3}$,2kπ+$\frac{5π}{6}$),(k∈z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}滿足:${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{{{a_{n+1}}}}{2^n}=2n+2$(n∈N*),且a2=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={log_{\sqrt{2}}}{a_n}$,求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某地在建造游泳池時需建造附屬室外蓄水池,蓄水池要求容積為300m3,深為3m.如果池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元,那么怎樣設(shè)計(jì)水池的底面的長和寬,才能使蓄水池總造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn),A是相應(yīng)的頂點(diǎn),P是y軸上的點(diǎn),滿足∠FPA=α,則雙曲線的離心率的最小值為$\frac{1+sinα}{1-sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P為橢圓上一點(diǎn),$|OP|=\frac{{\sqrt{2}}}{4}a$,且|PF1|,|F1F2|,|PF2|成等比數(shù)列,則橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,且四邊形ABCD為菱形,F(xiàn)為棱BB1的中點(diǎn),N為線段AC1的中點(diǎn).
(1)求證:直線MF∥平面ABCD;
(2)求證:平面AFC1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解為( 。
A.9B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校為了解學(xué)生對正在進(jìn)行的一項(xiàng)教學(xué)改革的態(tài)度,從500名高一學(xué)生和400名高二學(xué)生中按分層抽樣的方式抽取了45名學(xué)生進(jìn)行問卷調(diào)查,結(jié)果可以分成以下三類:支持、反對、無所謂,調(diào)查結(jié)果統(tǒng)計(jì)如下:
 支持無所謂反對
高一年級18x2
高二年級106y
(1)(i)求出表中的x,y的值;
(ii)從反對的同學(xué)中隨機(jī)選取2人進(jìn)一步了解情況,求恰好高一、高二各1人的概率;
(2)根據(jù)表格統(tǒng)計(jì)的數(shù)據(jù),完成下面的2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為持支持與就讀年級有關(guān).(不支持包括無所謂和反對)
 高一年級高二年級總計(jì)
支持 
 不支持
總計(jì)   
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

同步練習(xí)冊答案