數(shù)列{an}滿足,當(dāng)t<a1<t+1(其中t>2)時(shí)有an+k=an(k∈N*),則k的最小值為( )
A.2
B.4
C.8
D.10
【答案】分析:由t<a1<t+1而,結(jié)合數(shù)列的遞推公式可知,當(dāng)an≥t有an+1=an-t,得a2=a1-t,從而有0<a1-t<1<2<t,即a2<t,同理可得t+1<a3<t+2,1<a4<2,從而有a5=t+2-t-2+a1=a1,可求數(shù)列的周期即k的最小值
解答:解:由t<a1<t+1,而當(dāng)an≥t有an+1=an-t,得a2=a1-t,
又由t<a1<t+1得0<a1-t<1<2<t,即a2<t,
則a3=t+2-a2=t+2-a1+t=2t+2-a1
又由0<a2<1得t+1<t+2-a2<t+2,即t+1<a3<t+2,
則a4=a3-t=2t+2-a1-t=t+2-a1
又由t+1<a3<t+2得1<a3-t<2,即1<a4<2
則a5=t+2-t-2+a1=a1故最小正周期T=4.
故選B
點(diǎn)評(píng):本題主要考查了由數(shù)列的遞推公式求解數(shù)列的項(xiàng),解題的關(guān)鍵是由前幾項(xiàng)的基本規(guī)律總結(jié)出數(shù)列的周期.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足:當(dāng)n=2k-1(k∈N*)時(shí),an=n;當(dāng)n=2k(k∈N*)時(shí),an=ak
(1)求a2+a4+a6+a8+a10+a12+a14+a16
(2)若Sn=a1+a2+a3+…+a2n-1+a2n,證明:Sn=4n-1+Sn-1(n≥2);
(3)證明:
1
S1
+
1
S2
+…+
1
Sn
<1-
1
4n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足:當(dāng) n=2k-1(k∈N*)時(shí),an=n;當(dāng)n=2k(k∈N*)時(shí),an=ak;記sn=a1+a2+a3+…+a2n-1+a2n
(1)求s3
(2)證明:sn=4n-1+sn-1(n≥2)
(3)證明:
1
s1
+
1
s2
+
1
s3
+…+
1
sn
<1-
1
4n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上海卷理)(18分)已知以a1為首項(xiàng)的數(shù)列{an}滿足:

⑴ 當(dāng)a1=1,c=1,d=3時(shí),求數(shù)列{an}的通項(xiàng)公式

⑵ 當(dāng)0<a1<1,c=1,d=3時(shí),試用a1表示數(shù)列{an}的前100項(xiàng)的和S100

⑶ 當(dāng)0<a1(m是正整數(shù)),c=d≥3m時(shí),求證:數(shù)列a2,a3m+2,a6m+2,a9m+2成等比數(shù)列當(dāng)且僅當(dāng)d=3m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京市豐臺(tái)區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

數(shù)列{an}滿足.當(dāng)an取得最大值時(shí)n等于( )
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案