已知a>b>0,ab=1,則
a2+b2
a-b
的最小值為
 
考點:基本不等式
專題:不等式的解法及應用
分析:本題是基本不等式問題,可以利用a>b>0得到a-b>0(正數(shù)),再利用條件ab為定值將a2+b2轉化為(a-b)2與ab,化簡后,運用基本不等式解決問題.
解答: 解:∵a>b>0,ab=1∴a-b>0 
a2+b2
a-b
=
(a-b)2+2ab
a-b
=(a-b)+
2
a-b
≥2
(a-b)
2
a-b
=2
2

當且僅當a-b=
2
時取等號
故答案為2
2
點評:本題主要考查了基本不等式的應用和轉化化歸的數(shù)學思想,注意不等式成立的條件(一正二定三相等)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=AC=2,∠B=30°,P為BC邊中線上的任意一點,則
CP
BC
的值為(  )
A、-12B、-6C、6D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班研究性學習小組在今年11月11日“雙11購物節(jié)”期間,對[25,55)歲的人群隨機抽取了1000人進行了一次是否參加“搶購商品”的調查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖.
組數(shù)分組搶購商品
的人數(shù)
占本組
的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55]150.3
(Ⅰ)求統(tǒng)計表中a,p的值;
(Ⅱ)從年齡在[40,50)歲參加“搶購商品”的人群中,采用分層抽樣法抽取9人參滿意度調查,其中3人感到滿意,記感到滿意的3人中年齡在[40,50)歲的人數(shù)為X,求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高一年級共有320人,為調查高一年級學生每天晚自習自主支配學習時間(指除了完成老師布置的作業(yè)后學生根據(jù)自己的需要進行學習的時間)情況,學校采用隨機抽樣的方法從高一學生中抽取了n名學生進行問卷調查.根據(jù)問卷得到了這n名學生每天晚自習自主支配學習時間的數(shù)據(jù)(單位:分鐘),按照以下區(qū)間分為七組:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到頻率分布直方圖如圖.已知抽取的學生中每天晚自習自主支配學習時間低于20分鐘的人數(shù)是4人.
(1)求n的值;
(2)若高一全體學生平均每天晚自習自主支配學習時間少于45分鐘,則學校需要減少作業(yè)量.根據(jù)以上抽樣調查數(shù)據(jù),學校是否需要減少作業(yè)量?(注:統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過圓x2+y2+2x-4y=0的圓心,且與直線2x+3y=0垂直的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個四棱錐的底面為菱形,其三視圖如圖所示,則這個四棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若正數(shù)x,y滿足3x+y=5xy,則4x+3y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形PAD所在平面與矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若點P、A、B、C、D都在同一球面上,則此球的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,向量
p
=(2b-c,cosC),
q
=(2a,1),且
p
q

(Ⅰ)求A;
(Ⅱ)求函數(shù)f(C)=1-
2cos2C
1+tanC
的值域.

查看答案和解析>>

同步練習冊答案